cho Δ ABC vuông tại A (AB < AC) có Ax là tia phân giác của góc A. Vẽ BD vuông góc Ax tại D và CE vuống góc với Ax tại E. Gọi M là trung điểm của BC. Tính các góc của Δ DME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta\)ABC: ^A=900; M là trung điểm BC => AM=BM=CM
Ax là tia phân giác ^BAC => ^BAD=^CAE=450.
Mà BD vuông góc Ax, CE vuông góc Ax => 2 tam giác BAD và CAE vuông cân tại D và E.
=> DA=DB và EA=EC.
Xét \(\Delta\)AEM=\(\Delta\)CEM (c.c.c) => ^AEM=^CEM (2 góc tương ứng)
=> EM là phân giác ^AEC => ^AEM=^CEM=900/2=450 hay ^DEM=450.
Tương tự: \(\Delta\)AMD=\(\Delta\)BMD (c.c.c) => ^ADM=^BDM (2 góc tương ứng)
Ta có: ^BDM=^BDE+^EDM=900+^EDM => ^ADM=900+^EDM.
Lại có: ^ADM+^EDM=1800 (kề bù). Thay ^ADM=900+^EDM, ta được:
900+^EDM+^EDM=1800 <=> 2.^EDM=900 => ^EDM=450.
Vậy tam giác DME có: ^DEM=450; ^EDM=450 => ^DME=900.
k mik nha bn
a) Vì ^HAB + ^HAC = 90
^HAB + ^HBA = 90 (1)
=> ^^HAC = ^HBA
Ta có: ^CAy + ^BAx = 180 - 90 = 90
mà ^BAx = ^BAH
=> ^HAB + ^CAy = 90 (2)
từ (1) và (2) => ^HBA = ^CAy
<=> ^HAC = ^CAy => Ac là tia phân giác ^HAy
b) xét tam giác AHB = ADB ( cạnh huyền- góc nhọn)
=> BD = HB và AH = AD (3)
Xét tam giác ACE = ACH ( cạnh huyền-góc nhọn)
=> CE = CH và AH = AE (4)
=> BD + CE = BH + CH =BC
Từ (3) và (4) => AE = AD
=> A là trung điểm DE
c) Xét tam giác EHD có AH là đường trung tuyến ứng với một cạnh
mà AH = AE =BC/2
=> tam giác EHD vuông tại H
=> HD vuông góc HE
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD