giải pt sau : \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$
PT $\Leftrightarrow x^2+5x+1=x+1$
$\Leftrightarrow x^2+4x=0$
$\Leftrightarrow x(x+4)=0$
$\Rightarrow x=0$ hoặc $x=-4$
Kết hợp đkxđ suy ra $x=0$
2. ĐKXĐ: $x\leq 2$
PT $\Leftrightarrow x^2+2x+4=2-x$
$\Leftrightarrow x^2+3x+2=0$
$\Leftrightarrow (x+1)(x+2)=0$
$\Leftrightarrow x+1=0$ hoặc $x+2=0$
$\Leftrightarrow x=-1$ hoặc $x=-2$
3.
ĐKXĐ: $-2\leq x\leq 2$
PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$
$\Leftrightarrow 2x+4=2-x$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
mình nhầm mẫu nhé :v mình làm lại
\(=\left(\dfrac{x-\sqrt{x}-2x+4\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\right):\dfrac{2-\sqrt{x}}{x-1}\)
\(=\dfrac{-x+3\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{2-\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(2-\sqrt{x}\right)\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\) (ĐK: \(x\ge0,x\ne1\))
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(\Leftrightarrow x-\sqrt{x}=x-2\sqrt{x}+\sqrt{x}-2\)
\(\Leftrightarrow x-\sqrt{x}=x-\sqrt{x}-2\)
\(\Leftrightarrow x-x=\sqrt{x}-\sqrt{x}-2\)
\(\Leftrightarrow0=-2\) (vô lý)
⇒ Phương trình vô nghiệm
\(đk:x\ge0;x\ne1\)
\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ \Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\\ \Rightarrow x-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}\\ \Rightarrow-\sqrt{x}-2+\sqrt{x}=0\\ \Rightarrow-2=0\left(voli\right)\)
Vậy phương trình vô nghiệm
a. ĐKXĐ \(x\ge2\)
\(\sqrt{x+3}-3+\sqrt{x-2}-2=0\)
\(\Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}+\dfrac{x-6}{\sqrt{x-2}+2}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x+3}+3}+\dfrac{1}{\sqrt{x-2}+2}\right)=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x^2-x-1=\left(1-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2-x-1=x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x=2\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\) Pt vô nghiệm
\(a.\sqrt{x+3}=5-\sqrt{x-2}\)
\(\sqrt{x+3}+\sqrt{x-2}=5\)
\(\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}=5^2\)
\(x+3+x-2=25\)
\(2x+1=25\)
\(x=12\)
\(b.\sqrt{x^2-x-1}=1-x\)
\(\sqrt{\left(x^2-x-1\right)^2}=\left(1-x\right)^2\)
\(x^2-x-1=1-2x+x^2\)
\(x^2-x-1-1+2x-x^2=0\)
\(x-2=0\)
\(x=2\)
\(a,ĐK:1\le x\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)
\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=\left|2\sqrt{x+1}-2\right|\)
Áp dụng BĐT trị tuyệt đối:
\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=\left|2\sqrt{x+1}-2\right|\)
Dấu "=" xảy ra khi và chỉ khi \(\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-3\right)\ge0\)
\(\Leftrightarrow\sqrt{x+1}-3\ge0\)
\(\Leftrightarrow x+1\ge9\)
\(\Leftrightarrow x\ge8\)
Kiểu dạng bài này là thường dưới căn cùng phép tính để đặt ẩn nên mình nghĩ là \(\sqrt{x+2\sqrt{x-1}}\) ...... mới đúng, còn nếu không phải thì bảo mình nhé và cách làm thì nó cũng giống cách mình làm thôi: )
ĐK: \(x\ge1\)
Đặt \(\sqrt{x-1}=t\left(t\ge0\right)\Rightarrow x=t^2+1\)
PT trở thành:
\(\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=t+8\\ \Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=t+8\\ \Leftrightarrow\left|t+1\right|+\left|t-1\right|=t+8\left(1\right)\)
Với \(0\le t< 1\) có:
(1) \(\Leftrightarrow t+1+1-t-t-8=0\)
\(\Leftrightarrow-6-t=0\\ \Leftrightarrow t=-6\left(loại\right)\)
Với \(t\ge1\) có:
(1) \(\Leftrightarrow t+1+t-1-t-8=0\)
\(\Leftrightarrow t-8=0\\ \Leftrightarrow t=8\left(nhận\right)\)
\(\Rightarrow x=t^2+1=8^2+1=64+1=65\)
Vậy nghiệm của PT là `x=65`