K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2015

Trước khi bắt đầu ta nhắc lại bất đẳng thức Cauchy-Schwartz sau: Với \(a,b>0\) thì  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Để chứng minh ta áp dụng bất đẳng thức Cô-Si liên tiếp hai lần như sau \(a+b\ge2\sqrt{ab},\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\to\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4.\)

Theo giả thiết \(x+y=1\). Theo bất đẳng thức Cô-Si ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) 

Đặc biệt ta suy ra \(-5xy\ge-\frac{5}{4}.\)         (1)

Theo bất đẳng thức Cauchy ta có \(\frac{1}{2xy}+8xy\ge2\sqrt{\frac{1}{2xy}\cdot8xy}=4\to\frac{1}{2xy}+8xy\ge4.\)      (2)

Mặt khác, sử dụng bất đẳng thức Cauchy - Schwartz ta có \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=4.\)           (3)

Từ ba bất đẳng thức (1), (2), (3), ta cộng lại sẽ được \(\frac{1}{x^2+y^2}+\frac{1}{xy}+3xy\ge4+4-\frac{5}{4}=\frac{27}{4}.\) (ĐPCM)
 

 

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải: 

Áp dụng BĐT Bunhiacopxky:

$[(x+\frac{1}{x})^2+(y+\frac{1}{y})^2](1+1)\geq (x+\frac{1}{x}+y+\frac{1}{y})^2$

$\Leftrightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(x+y+\frac{1}{x}+\frac{1}{y})^2=\frac{1}{2}(1+\frac{1}{xy})^2$

Mà: 
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$ theo BĐT Cô-si

$\Rightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(1+\frac{1}{\frac{1}{4}})^2=\frac{25}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$ 

13 tháng 12 2021

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

13 tháng 12 2021

Lm dùm mik bài dưới lun vs

10 tháng 12 2017

Ta co: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)

\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

Vậy \(x=y=\frac{1}{2}\)

10 tháng 12 2017

Ta có: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

Vậy \(x=y=\frac{1}{2}\)

28 tháng 7 2018

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

tích mình đi

ai tích mình 

mình tích lại 

thanks

19 tháng 1 2022

Đặt \(\dfrac{x-y}{z}=m,\dfrac{y-z}{x}=n,\dfrac{z-x}{y}=p\), ta có:

\(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{n+p}{m}+\dfrac{p+m}{n}+\dfrac{m+n}{p}\)

Tính \(\dfrac{n+p}{m}\) theo x, y, z ta được:

\(\dfrac{n+p}{m}=\dfrac{z}{x-y}.\dfrac{y^2-yz+xz-x^2}{xy}=\dfrac{z}{xy}\left(-x-y+x\right)\)

           \(=\dfrac{z}{xy}\left(-x-y-z+2z\right)=\dfrac{2x^2}{xy}\) vì \(\left(x+y+z\right)=0\)

Tương tự:    \(\dfrac{m+p}{n}=\dfrac{2x^2}{yz}.\dfrac{m+n}{p}=\dfrac{2y^2}{xz}\)

Vậy \(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}=3+\dfrac{2.3xyz}{xyz}=3+6=9\)

 

23 tháng 10 2021

Đặt \(P=\left(\dfrac{x-y}{z}+\dfrac{y-z}{x}+\dfrac{z-x}{y}\right)\left(\dfrac{z}{x-y}+\dfrac{x}{y-z}+\dfrac{y}{z-x}\right)=9\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-y}{z}=a\\\dfrac{y-z}{x}=b\\\dfrac{x-z}{y}=c\end{matrix}\right.\)

\(\Leftrightarrow P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ =1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\\ =3+\dfrac{a+c}{b}+\dfrac{a+b}{c}+\dfrac{b+c}{a}\)

Ta có \(\dfrac{a+c}{b}=\dfrac{\dfrac{x-y}{z}+\dfrac{z-x}{y}}{\dfrac{y-z}{x}}=\dfrac{xy-y^2+z^2-xz}{yz}\cdot\dfrac{x}{y-z}\)

\(=\dfrac{\left(z-y\right)\left(y+z-x\right)x}{yz\left(y-z\right)}=\dfrac{x\left(x-y-z\right)}{yz}\)

Mà \(x+y+z=0\Leftrightarrow x=-y-z\)

\(\Leftrightarrow\dfrac{a+c}{b}=\dfrac{x\left(x+x\right)}{yz}=\dfrac{2x^2}{yz}\)

Cmtt ta được \(\dfrac{a+b}{c}=\dfrac{2y^2}{xz};\dfrac{b+c}{a}=\dfrac{2z^2}{xy}\)

Cộng vế theo vế

\(\Leftrightarrow P=\dfrac{2x^2}{yz}+\dfrac{2y^2}{xz}+\dfrac{2z^2}{xy}+3=\dfrac{2x^3+2y^3+2z^3}{xyz}+3\\ \Leftrightarrow P=\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}+3\)

Lại có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)

Thế vào \(P\)

\(\Leftrightarrow P=\dfrac{2\cdot3xyz}{xyz}+3=6+3=9\)

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

NV
27 tháng 12 2020

\(\sqrt{xy}\left(x-y\right)=x+y>0\Rightarrow x-y>0\)

Bình phương 2 vế giả thiết:

\(xy\left(x-y\right)^2=\left(x+y\right)^2\Leftrightarrow xy\left[\left(x+y\right)^2-4xy\right]=\left(x+y\right)^2\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow a^2>4b\)

\(b\left(a^2-4b\right)=a^2\Leftrightarrow a^2\left(b-1\right)=4b^2\)

\(\Leftrightarrow a^2=\dfrac{4b^2}{b-1}=4\left(b+1\right)+\dfrac{4}{b-1}=4\left(b-1\right)+\dfrac{4}{b-1}+8\ge2\sqrt{\dfrac{16\left(b-1\right)}{b-1}}+8=16\)

\(\Rightarrow a\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(2+\sqrt{2};2-\sqrt{2}\right)\)