K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

A = [y^2 +2y(x-2) + (x-2)^2] + (x^2-6x+9) + 1 

= (y+x-2)^2 + (x-3)^2 + 1 >=1 

Dấu = xảy ra khi  <=> y+x-2 = x-3=0

<=> x=3; y=-1

25 tháng 12 2020

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

20 tháng 8 2017

1) \(a^2+\frac{1}{a^2}=14\Leftrightarrow a^2+\frac{1}{a^2}+2a.\frac{1}{a}=16\Leftrightarrow\left(a+\frac{1}{a}\right)^2=16\Rightarrow a+\frac{1}{a}=4\)

\(\Rightarrow\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=a^3+\frac{1}{a}+a+\frac{1}{a^3}=a^3+4+\frac{1}{a^3}=4.14=56\)

\(\Rightarrow a^3+\frac{1}{a^3}=52\)

Ta có : \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=a^5+\frac{1}{a}+a+\frac{1}{a^5}=a^5+4+\frac{1}{a^5}=14.52\)

\(\Rightarrow a^5+\frac{1}{a^5}=14.52-4=724\)

2) \(A=2xy-x^2-4y^2+2x+10y-2000\)

\(=\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)+\left(-3y^2+12y-12\right)-1988\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y^2-4y+4\right)-1987\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2-1987\le-1987\forall x;y\) có GTLN là 2013

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy \(A_{max}=-1987\) tại \(x=3;y=2\)

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

NV
25 tháng 12 2020

\(A=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-6y+9\right)+2018\)

\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2018\ge2018\)

\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

25 tháng 12 2020

Giúp mk bài hình mk mới đăng với Nguyễn Việt Lâm Quản lý, ý b,c, d thôi

3 tháng 7 2021

\(a,A=x^2-2x+2=\left(x-1\right)^2+1\ge1\)

dấu"=" xảy ra<=>x=1

\(b,B=2x^2-5x+2=2\left(x^2-\dfrac{5}{2}x+1\right)=2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{9}{16}\right)\)

\(=2\left[\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{16}\right]=2\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

dấu"=" xảy ra<=>x=5/4

c,\(C=x^2+2xy+4y^2+3=\left(x+y\right)^2+3\left(y^2+1\right)\ge3\)

dấu"=" xảy ra<=>x=y=0

d,\(D=\left|x-1\right|+|2x-1|=|1-x|+|2x-1|\ge|1-x+2x-1|\)

\(=|x|\ge0\)

dấu"=" xảy ra<=>\(x=0\)

7 tháng 4 2015

\(A=x^2+2xy+2y^2+2x-4y+2013\)

\(=\left(x^2+y^2+1+2x+2y+2xy\right)-1-2y+y^2-4y+2013\)\(=\left(x+y+1\right)^2+\left(y^2-2.y.3+9\right)-9+2012\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\)

mà \(\left(x+y+1\right)^2,\left(y-3\right)^2\ge0\)

\(\Rightarrow A=x^2+2xy+2y^2+2x-4y+2013=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\ge2003\)

\(\Rightarrow Min\left(A\right)=2003\)

17 tháng 10 2016

còn thiếu: khi y=3 và x= -y-1