bài 1 Chưng minh rằng: đa thức sau <0
a, P(x)= 4x-5-x2
b,Q(x)=24x-48-9x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ \(P\left(x\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\Rightarrow P\left(x\right)<0\)
b/ \(Q\left(x\right)=-\left(9x^2-24x+16+32\right)=-\left[\left(3x-4\right)^2+32\right]\)
Tương tự như câu a => Q(x)<0
2/
b/ \(B=-\left(x^2-4x+4-5\right)=-\left[\left(x-2\right)^2-5\right]\)
Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-5\ge-5\Rightarrow-\left[\left(x-2\right)^2-5\right]\le5\)
=> GTLN(B)=5
c/ Nhân phá ngoặc, rút gọn được
\(C=-x^2\left(x^2+10x+25\right)+36=-x^2\left(x+5\right)^2+36\)
Lý luận tượng tự câu b => \(C\le36\)
=> GTLN(C)=36
a.
\(P\left(x\right)=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1>1\forall x\in R\)\(Q\left(x\right)=\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=x^2-8x+16+3=\left(x-4\right)^2+3>0\forall x\in R\)b.
\(A\left(x\right)=4x-5-x^2=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1< 0\forall x\in R\)\(B\left(x\right)=24x-18-9x^2=-\left(9x^2-24x+18\right)=\left(-9x^2-24x+16+2\right)=-\left(3x+4\right)^2-2< 0\forall x\in R\)
a, P(x) =x^2-6x+10=x^2-6x+9+1=(x+3)^2+1>0
Q(x) =(x-3)(x-5)+4=x^2-8x+15+4=x^2-8x+19=x^2-8x+16+3=(x-4)^2+3>0
Kết luận:với bất kì giá trị nào của biến x thì 2 đa thức trên dương
b, A(x) =4x-5-x^2=-x^2+4x-5=-x^2+4x-4-1=-(x-2)^2-1<0
B(x) =24x-18-9x^2=-9x^2+24x-18= -(3x)^2+24x-16-2=-(3x-4)^2-2<0
Kết luận : ko có giá trị nào của biến x mà 2 đa thức trên dương
a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)
b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)
Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)
https://meet.google.com/zvs-pdqd-skj?authuser=0&hl=vi. vào link ik
`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)
`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`
`= 2x^2+3`
`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)
`= -x^3+(3x^2-x^2)+(-3x+2x)+2`
`= -x^3+2x^2-x+2`
`P(x)-Q(x)-R(x)=0`
`-> P(X)-Q(x)=R(x)`
`-> R(x)=P(x)-Q(x)`
`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`
`-> R(x)=2x^2+3+x^3-2x^2+x-2`
`= x^3+(2x^2-2x^2)+x+(3-2)`
`= x^3+x+1`
`@`\(\text{dn inactive.}\)
a: P(x)-Q(x)-R(x)=0
=>R(x)=P(x)-Q(x)
=2x^2+3+x^3-2x^2+x-2
=x^3+x+1
a: \(\Leftrightarrow4x^3+16x^2+28x-x^2-4x-7+10+a⋮x^2+4x+7\)
hay a=-10
a/ P(x)= 4x - 5- x2
= - (x2- 4x+4)-1 = -(x-2)2-1 <0 với mọi x
b/ Q(x)= 24x-48-9x2= - (9x2-24x + 16)- 32 = - (3x -4)2 -32 <0 với mọi x