Tìm giá trị nhỏ nhất:
A)2x^2-2x+1
B)x^2-x+5
C)3x^2-4x+5
D)2x^2+3x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(a)\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1.\left(x\ne2;4\right).\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1.\\ \Rightarrow x^2-4x-3x+12+x^2-4x+4+x^2-4x-2x+8=0.\\ \Leftrightarrow3x^2-17x+24=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}.\\x=3.\end{matrix}\right.\) (TM).
\(b)3x+12=0.\\ \Leftrightarrow3x=-12.\\ \Leftrightarrow x=-4.\)
\(c)5+2x=x-5.\\ \Leftrightarrow2x-x=-5-5.\\ \Leftrightarrow x=-10.\)
\(d)2x\left(x-2\right)+5\left(x-2\right)=0.\\ \Leftrightarrow\left(2x+5\right)\left(x-2\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{2}.\\x=2.\end{matrix}\right.\)
\(e)\dfrac{3x-4}{2}=\dfrac{4x+1}{3}.\\ \Rightarrow3\left(3x-4\right)-2\left(4x+1\right)=0.\\ \Leftrightarrow9x-12-8x-2=0.\\ \Leftrightarrow x=14.\)
\(f)\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1.\left(x\ne\pm1\right).\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x}{x^2-1}=1.\\ \Leftrightarrow x^2+3x-x^2+1=0.\\ \Leftrightarrow3x+1=0.\\ \Leftrightarrow x=\dfrac{-1}{3}.\)
\(g)\dfrac{2x}{x-1}+\dfrac{3-2x}{x+2}=\dfrac{6}{\left(x-1\right)\left(x+2\right)}.\left(x\ne1;-2\right).\\ \Leftrightarrow\dfrac{2x^2+4x+\left(3-2x\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=\dfrac{6}{\left(x-1\right)\left(x+2\right)}.\\ \Rightarrow2x^2+4x+3x-3-2x^2+2x-6=0.\\ \Leftrightarrow9x=9.\)
\(\Leftrightarrow x=1\left(koTM\right).\)
\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
a, \(A=x^4-2x^3+2x^2-2x+3\)
\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)
\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)
\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)
\(=\left(x^2+1\right)\left(x-1\right)^2+2\)
Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)
\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x = 1
Vậy Amin = 2 khi x = 1
b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)
đề sai ko
c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)
Dấu "=" xảy ra khi x=1
Vậy Cmin = 5 khi x = 1
2/
+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)
Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)
Dấu "=" xảy ra khi x=y=1/2
Vậy Dmax=7/2 khi x=y=1/2
+) Đề sai
+)bài này là tìm min
\(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra khi x=3/2
Vậy Gmin=11/4 khi x=3//2
Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:
$3x+5(x+1)=13$
$8x+5=13$
$8x=8$
$x=1$
$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:
$2(y+5)-3y=4$
$-y+10=4$
$-y=-6$
$y=6$
$x=6+5=11$
c. Thay $y=x-2$ vô điều kiện đầu thì:
$-x+5(x-2)=-6$
$4x-10=-6$
$4x=10+(-6)=4$
$x=1$
$y=x-2=1-2=-1$
a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)
Đặt A = \(2x^2-2x+1=2\left(x^2-x+\frac{1}{2}\right)=2\left(x^2-x+\frac{1}{4}+\frac{1}{4}\right)=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=> Min A = 1/2
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Min A = 1/2 <=> x = 1/2
b) Đặt B = \(x^2-x+5=x^2-x+\frac{1}{4}+\frac{19}{4}=\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
=> Min B = 19/4
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Min B = 19/4 <=> x =1/2
c) Đặt C = \(3x^2-4x+5=3\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=3\left(x-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)
=> Min C = 11/3
Dấu "=" xảy ra <=> x - 2/3 = 0 <=> x = 2/3
Vậy Min C = 11/3 <=> x = 2/3
d) Đặt D = \(2x^2+3x+5=2\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)=2\left(x+\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
=> Min D = 31/8
Dấu "=" xảy ra <=> x + 3/4 = 0 <=> x =-3/4
Vậy Min D = 31/8 <=> x = -3/4