K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

a) D đối xứng B qua AH => AH là trung trực của BD => AH\(\perp\)BD mà AH\(\perp\)BC => B,D,C thẳng hàng

Tương tự cho B,C,E --->đpcm

b) AH là trung trực của BD và CE và giao nhau tại H => H là trung điểm của BD và CE =>\(\hept{\begin{cases}HB=HD\\HC=HE\end{cases}}\)

Vì AB<AC nên HB<HC do đó E nằm trên tia đối của tia BC => BE=HE-HB=HC-HD=CD ---> vậy BE=CD

Cũng xuất phát từ vai trò của AH mà \(\hept{\begin{cases}\widehat{HAB}=\widehat{HAD}\\\widehat{HAE}=\widehat{HAC}\end{cases}}\)

Vì E nằm trên tia đối tia BC => \(\widehat{BAE}=\widehat{HAE}-\widehat{HAB}=\widehat{HAC}-\widehat{HAD}=\widehat{CAD}\)

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!

Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.

a) CM: OEFC là hình thang

b) CM: OEIC là hình bình hành.

c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. 

d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)

 

Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.

a) CM: ADCH là hình chữ nhật.

b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.

c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.

d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)

 

Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.

a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.

b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.

c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)

1
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

21 tháng 8 2015

a) -cm AB va AC la trung truc DH va HE

-cm tam giac AMD= tam giac AMH ( c-g-c-) : AD=AH ( A thuoc trung truc DH) .AM=AM canh chung , DM=MH ( M thuoc trung truc DH)

cmtt tam giac AHN=tam giac ANE

--> AM va AN la p.g goc DAH va goc HAE

==> goc DAH+ HAE= goc DAE--> 2 goc MAH+ 2 goc HAN= goc DAE

   --> 2 ( goc MAH+goc HAN )= goc DAE--> goc DAE=2. goc A=2.60=120

ta co : goc DAE+ goc ADE+ goc AED=180 ( tong 3 goc trong tam giac )

--> gocADE+ AED=180- goc DAE=180-120=60

ma ADE = goc MHA va goc AED= goc AHN ( 2 cap tam giac bang nhau cmt)

nen goc MHA+goc AHN=60--> goc MHN=60