Cho tam giác ABC cân tại A, D thuộc AB, E thuộc AC sao cho AD = AE.
a) Chứng minh BE = CD
b) Chứng minh góc ABE = góc ACD
c) H la trung điểm BE va CD. Tam giác HBC la tam giác gì ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác ABE và tam giác ACD có:
AE = AD (gt)
AB = AC (tam giác ABC cân tại A)
^BAC chung
=> Tam giác ABE = Tam giác ACD (c - g - c)
=> BE = CD (cặp cạnh tương ứng)
b/ Vì tam giác ABE = tam giác ACD (cmt)
=> ^ABE = ^ACD (cặp góc tương ứng) (1)
Vì tam giác ABC cân tại A (gt) => ^ABC = ^ACB (TC tam giác cân) (2)
Lại có: ^ABC = ^ABE + ^EBC
^ACB = ^ACD + ^ECB (3)
Từ (1) (2) (3) => ^EBC = ^ECB => Tam giác BIC cân tại I
c/ Xét tam giác ADE có: AD = AE (tam giác ABE = tam giác ACD)
=> Tam giác ADE cân tại A
=> ^ADE = ^AED = \(\dfrac{180-gócA}{2}\)
Tam giác ABC cân tại A (gt) => ^ABC = ^ACB = \(\dfrac{180-gócA}{2}\)
=> ^ADE = ^AED = ^ABC = ^ACB
Ta có: ^ADE = ^ABC (cmt)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dhnb)
a) \(\Delta AEB-\Delta ADC\) có :
 chung
BA = AC (gt)
AD = AE (gt)
\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\)
b) \(\Delta BAE=\Delta CAD\Rightarrow\widehat{ABE}=\widehat{ACD}\) ( Góc tương ứng )
c) Mình không vẽ được hình
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 -111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Đáp số: 0
a) ta có AB=AC. BD=CE => AD=AE => tam giác ADE cân tại A => góc ADE= \(\frac{180-A}{2}\)
tam giác ABC CÂN TẠI A => GÓC B=$ \(\frac{180-A}{2}\)
=> GÓC D =GÓC B. MÀ 2 GÓC VỊ TRÍ ĐỒNG VỊ => DE//BC
B) TAM GIÁC ABE VÀ TAM GIÁC ACD
AB=AC
GÓC A CHUNG
BE=CD
=> 2 TAM GIÁC = NHAU (C.G.C)
C) tam giác ABE = tam giác ACD => GÓC ABE= GÓC ACD
C/M TAM GIÁC DBC VÀ TAM GIÁC EBC (C.G.C)
=> GÓC BCD=GÓC ECB => TAM GIÁC IBC CÂN => IB=IC
XÉT tam giác BID VÀ tam giác CIE:
GÓC BID=CIE(ĐỐI ĐỈNH)
IB=IC
GÓC DBE=ECD
=> 2 TAM GIÁC = NHAU (G.C.G)
D) XÉT TAM GIÁC IAB VÀ TAM GIÁC IAC
AB=AC
GÓC ABE=ACD
IB=IC
=> 2 TAM GIÁC = NHAU (C.G.C)
=> GÓC BAI=GÓC CAI
=> AI LÀ PHÂN GIÁC GÓC BAC
e) MÀ TAM GIÁC ABC CÂN => AI ĐỒNG THỜI LÀ ĐƯỜNG CAO => AI VUÔNG GÓC BC
a) Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE(gt)
và AB=AC(ΔABC cân tại A)
nên BD=CE
Xét ΔDBC và ΔECB có
DB=EC(cmt)
\(\widehat{DBC}=\widehat{ECB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
Suy ra: CD=BE(hai cạnh tương ứng)
b) Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{A}\) chung
AE=AD(gt)
Do đó: ΔABE=ΔACD(c-g-c)
Suy ra: \(\widehat{ABE}=\widehat{ACD}\)