K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2015

x2 + y2 = x+ y  => (x- x + \(\frac{1}{4}\)) + (y2 - y + \(\frac{1}{4}\)) = \(\frac{1}{2}\) => (x - \(\frac{1}{2}\))2 + (y - \(\frac{1}{2}\))2 = \(\frac{1}{2}\)

F = (x - y)2 = [(x - \(\frac{1}{2}\)) - (y - \(\frac{1}{2}\))]

Áp dụng BĐT Bu nhia ta có F=  [1.(x - \(\frac{1}{2}\)) + (-1). (y - \(\frac{1}{2}\))]\(\le\) (12 + (-1)2). [(x - \(\frac{1}{2}\))2 + (y - \(\frac{1}{2}\))2] = 2.\(\frac{1}{2}\) = 1

=> -1 \(\le\) F \(\le\) 1

Vậy GTNN của F bằng -1 khi x = 0; y = 1

; GTLN bằng 1 khi x = 1; y = 0

22 tháng 8 2015

x^2+y^2=xy => xy >= 0

x^2 + y^2 = xy <=> (x-y)^2 = -xy => -xy >= 0 <=> xy <= 0

=> xy = 0 => x^2+y^2 = 0 <=> x=y=0

F luôn bằng 0 => Max = min = 0

F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy

=(x+y)3-xy(3x+3y-2)

=20073-xy[3.2007-2]

làm tiếp đi 

chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)

21 tháng 10 2019

Đầu tiên tìm GTLN, GTNN của xy.

Không mất tính tổng quát giả sử:

\(x\ge y+1\)

\(\Leftrightarrow x-y-1\ge0\)

\(\Leftrightarrow x-y-1+xy\ge xy\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)

Từ đây ta suy được:

\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)

Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)

Ta lại có:

\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)

Thế vô là xong

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

28 tháng 4 2016

a)25

b)2

4 tháng 4 2022

bn có giải đc ko?

4 tháng 4 2022

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)