K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

a+b+c=0 => (a+b+c)^2=0 <=> a^2+b^2+c^2+2(ab+bc+ca)=0

<=> 2+2(ab+bc+ca)=0 => ab+bc+ca=-1

(ab+bc+ca)^2=(ab)^2+(bc)^2+(ca)^2+2ab^2c+2abc^2+2a^2bc=(ab)^2+(bc)^2+(ca)^2+2abc(a+b+c)

=> (ab)^2+(bc)^2+(ca)^2 = (-1)^2 = 1

(a^2+b^2+c^2)^2 = a^4+b^4+c^4+2[(ab)^2+(bc)^2+(ca)^2] = a^4+b^4+c^4 + 2

<=>4=a^4+b^4+c^4+2 => a^4+b^4+c^4 = 2

Bạn kiểm tra lại có sai chỗ nào không nhé

25 tháng 7 2016

1/2 nhá

15 tháng 8 2015

a+b+c=0

=>(a+b+c)2=0

=>a2+b2+c2+2(ab+bc+ca)=0

Do a2+b2+c2=1

=>2(ab+bc+ca)=-1

=>ab+bc+ca=-0,5

=>(ab+bc+ca)2=0,25

=>a2b2+b2c2+c2a2+2abc(a+b+c)=0,25

=>a2b2+b2c2+c2a2=0,25(do a+b+c=0)

Từ a2+b2+c2=1

=>(a2+b2+c2)2=1

=>a4+b4+c4+2(a2b2+b2c2+c2a2)=1

=>a4+b4+c4+2.0,25=1

=>a4+b4+c4+0,5=1

=>a4+b4+c4=0,5

21 tháng 12 2017

a+b+c = 0 <=> (a+b+c)^2 = 0

<=> 2(ab+bc+ca) = 0 - (a^2+b^2+c^2) = 0 - 1 = -1

<=> ab+bc+ca = -1/2

<=> (ab+bc+ca)^2 = 1/4

<=> a^2b^2+b^2c^2+c^2a^2 = 1/4 - 2abc.(a+b+c) = 1/4 - 0 = 1/4

Có : a^2+b^2+c^2 = 1

<=> (a^2+b^2+c^2) = 1

<=>  A = a^4+b^4+c^4 = 1 - 2.(a^2b^2+b^2c^2+c^2a^2) = 1 - 2.1/4 = 1/2

Vậy A = 1/2

k mk nha

12 tháng 6 2016

Ta có :  \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-1\)

\(\left(ab+bc+ac\right)^2=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)

\(\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\Leftrightarrow a^4+b^4+c^4=4-2\left(a^2+b^2+c^2\right)=4-2=2\)

12 tháng 6 2016

Ta có:

a+b+c=0 => (a+b+c)2=0 => a2+b2+c2 = -2(ab+bc+ac)

=> a4+b4+c4 + 2(a2b2+b2c2 + a2c2) = 4(a2b2+b2c2 + a2c2)+8(ab2c + abc2 + a2bc)

=> a4+b4+c4 =2(a2b2+b2c2 + a2c2) + 8abc(a+b+c)

=> a4+b4+c4 =2(a2b2+b2c2 + a2c2)

Mặt khác, vì

a2+b2+c2 = -2(ab+bc+ac)=2

=> ab +bc+ac = -1

=>a2b2+b2c2 + a2c2+2(ab2c + abc2 + a2bc) = 1

=> a2b2+b2c2 + a2c= 1

=> a4+b4+c4  = 1* 2 =2  

5 tháng 7 2017

Bài 1:

\(a^2+b^2+c^2=16\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=16\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=16\Rightarrow ab+bc+ac=-8\)\(\Rightarrow\left(ab+bc+ac\right)^2=64\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=64\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=64\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=64\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=16^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=256-2.64=128\)

3 tháng 10 2017

Fan sơn tùng là đây

15 tháng 7 2016
  • Ta có : \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Rightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{4}{2}=-2\)

  • Ta có ; \(\left(a^2+b^2+c^2\right)^2=16\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=16\)

\(\Leftrightarrow a^4+b^4+c^4=16-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Mặt khác : \(\left(ab+bc+ac\right)^2=4\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=4\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=4\)

\(\Rightarrow a^4+b^4+c^4=16-2.4=8\)

11 tháng 7 2021

Ta có a + b + c = 0 

<=> (a + b + c)2 = 0

<=> a2 + b2 + c2 + 2(ab + bc + ca) = 0 

<=> ab + bc + ca = \(-\frac{1}{2}\)

=> \(\left(ab+bc+ca\right)^2=\frac{1}{4}\)

<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab^2c+2a^2bc+2abc^2=\frac{1}{4}\)

<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\frac{1}{4}\)

Lại có a2 + b2 + c2 = 1

=> (a2 + b2 + c2)2 = 1

<= > a4 + b4 + c4 + 2[(ab)2 + (bc)2 + (ca)2] = 1 

<=> \(a^4+b^4+c^4+2.\frac{1}{4}=1\)

<=> \(a^4+b^4+c^4=\frac{1}{2}\)

11 tháng 7 2021

Từ a + b + c = 0 => ( a + b + c )2 = 0 <=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

<=> ab + bc + ca = -1/2 => ( ab + bc + ca )2 = 1/4

<=> a2b2 + b2c2 + c2a2 + 2ab2c + 2bc2a + 2a2bc = 1/4

<=> a2b2 + b2c2 + c2a2 + 2abc( a + b + c ) = 1/4

<=> a2b2 + b2c2 + c2a2 = 1/4 ( vì a + b + c = 0 )

Từ a2 + b2 + c2 = 1 => ( a2 + b2 + c2 )2 = 1 <=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 1

<=> a4 + b4 + c4 + 2( a2b2 + b2c2 + c2a2 ) = 1 

<=> a4 + b4 + c4 + 1/2 = 1 <=> a4 + b4 + c4 = 1/2

Vậy A = 1/2