chứng minh rằng
abc+bca+cad chia hết 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(abc) chia hết cho 37
=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
abc+cba +bca = 111(a+b+c) =37.3(a+b+c) chia hết cho 37
Nếu abc chia hết cho 37 => (cba+bca) chia hết cho 37 => cba chia hết cho 37 và bca chia hết cho 37
\(abc⋮37\Leftrightarrow100a+10b+c⋮37\Leftrightarrow26a+10b+c⋮37\Leftrightarrow\)abc có gạch trên đầu
\(10\left(26a+10b+c\right)⋮37\Leftrightarrow260a+100b+10c⋮37\Leftrightarrow a+100b+10c⋮37\)
\(\Leftrightarrow\)bca \(⋮37\)(1)
\(abc⋮37\Leftrightarrow100a+10b+c⋮37\Leftrightarrow26a+10b+c⋮37\)abc có gạch trên đầu
\(\Leftrightarrow100\left(26a+10b+c\right)⋮37\Leftrightarrow2600a+1000b+100c⋮37\)
\(\Leftrightarrow10a+b+100c⋮37\Leftrightarrow\)cab \(⋮37\)(2)
Từ (1) và (2) =>abc \(⋮37\)thì bca và cab \(⋮37\)
bca=b x 100 + c x 10 + a x 1
bca = 100 + 10 + 1 = 111
xét số 111 chia cho 37
111 : 37 =3 (nhân )
=> bca : 37
ủng hộ mình nha bạn ơi
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37
Vì chia hết cho 37 chỉ cần tổng các chữ số chẳng hạn như 3 ; 9.
=>abc chia hết cho 37 thì cả bca và cab chia hết cho 7.
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
abc ⋮ 37
=> abc x 10 ⋮ 37
=> ( 100a + 10b + c) .10 ⋮ 37
=> 1000a+100b+10c ⋮37
=> 999a + ( 100b+10c+a)⋮37
=> 37.(27a) + bca ⋮ 37
Mà 37(27a)⋮37 nên bca chia hết cho 37.
bca ⋮ 37 nên bca.10⋮37
=> ( 100b + 10c + a ) .10 ⋮37
=> 1000b + 100c +10a ⋮37
=> 999b +(100c+10a+b)⋮37
=> 37(27b) + cab ⋮ 37
Mà 37 . (27b)⋮37 nên cab ⋮ 37
abc chia hết cho 37
=>100a+10b+c chia hết cho 37
=>10(100a+10b+c) chia hết cho 37
=>1000a+100b+10c chia hết cho 37
=>999a+(100b+10c+a) chia hết cho 37
=>999a+bca chia hết cho 37
mà 999a chia hết cho 37
=>bca chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
hi câu hỏi tương tự đó bn na
L I K E mk cái nha mk rất cần Vân Anh à
abc+bca+cab
= 100a+10b+c+100b+10c+a+100c+10a+b
= 111a+111b+111c
= 111(a+b+c)
= 37.3(a+b+c)
=> abc+bca+cab chia hết cho 37
tick cho mình nha