\(\frac{48}{X}\) = \(\frac{42}{49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(=\frac{7\cdot7\cdot8\cdot8\cdot9\cdot9\cdot10\cdot10\cdot11\cdot11}{6\cdot8\cdot7\cdot9\cdot8\cdot10\cdot9\cdot11\cdot10\cdot12}\)
\(=\frac{7\cdot11}{6\cdot12}\)
\(=\frac{77}{72}\)
b)
\(=1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)
\(=6+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(=6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=6+\frac{1}{2}-\frac{1}{8}\)
\(=6+\frac{3}{8}\)
\(=\frac{51}{8}\)
Chia thành...a và b nhé.
Bg
a)Ta có: \(\frac{49}{48}.\frac{64}{63}.\frac{81}{80}.\frac{100}{99}.\frac{121}{120}\)
= \(\frac{49.64.81.100.121}{48.63.80.99.120}\)
= \(\frac{7.7.8.8.9.9.10.10.11.11}{6.8.7.9.8.10.9.11.10.12}\)
= \(\frac{7.11}{6.12}\) (chịt tiêu trên dưới)
= \(\frac{77}{72}\)
b) Ta có: \(\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}\)
Có 6 số hạng (đếm)
= \(1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)
= \(1+1+...+1+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
= \(1.6+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
= \(6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
= \(6+\frac{1}{2}-\frac{1}{8}\)
= \(\frac{13}{2}-\frac{1}{8}\)
= \(\frac{51}{8}\)
Hơi dài....
A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\frac{50}{50}}\)
A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\left(\frac{1}{49}+\frac{1}{48}+\frac{50}{47}+...+\frac{1}{2}+\frac{1}{50}\right).50}=\frac{1}{50}\)
\(A=\frac{T}{M}\)
\(M=\frac{1}{49}+1+\frac{2}{48}+1+\frac{3}{47}+1+.........+\frac{48}{2}+1+1\)
\(=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+.........+\frac{50}{2}+1\)
\(=50.\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+......+\frac{1}{2}+\frac{1}{50}\right)=50.T\)
\(A=\frac{T}{50T}=\frac{1}{50}\)
p=\(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+49\)
=\(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\frac{50}{50}\)
=\(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)
=\(50\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)
p=50*S
\(\frac{S}{\text{p}}=\frac{1}{50}\)
\(50\cdot A=\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)
\(50\cdot A=1+\left(\frac{48}{2}+1\right)+\left(\frac{47}{3}+1\right)+...+\left(\frac{2}{48}+1\right)+\left(\frac{1}{49}+1\right)\)
\(50\cdot A=\frac{50}{50}+\frac{50}{2}+\frac{50}{3}+...+\frac{50}{48}+\frac{50}{49}\)
\(50\cdot A=50\cdot\left(\frac{1}{50}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}\right)\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)
\(\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)
\(=1+1+...+1+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)(có 49 số 1)
\(=\left(1+\frac{48}{2}\right)+\left(1+\frac{47}{3}\right)+...+\left(1+\frac{2}{48}\right)+\left(1+\frac{1}{49}\right)+1\)
\(=\frac{50}{2}+\frac{50}{3}+...+\frac{50}{48}+\frac{50}{49}+\frac{50}{50}\)
\(=50\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)\)
Chúc bạn học tốt.
Ta có :
\(\frac{x+1}{49}+\frac{x+2}{48}+\frac{x+3}{47}+\frac{x+4}{46}+\frac{x+5}{45}=-5\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{49}+1\right)+\left(\frac{x+2}{48}+1\right)+\left(\frac{x+3}{47}+1\right)+\left(\frac{x+4}{46}+1\right)+\left(\frac{x+5}{45}+1\right)=-5+5\)
\(\Leftrightarrow\)\(\frac{x+50}{49}+\frac{x+50}{48}+\frac{x+50}{47}+\frac{x+50}{46}+\frac{x+50}{45}=0\)
\(\Leftrightarrow\)\(\left(x+50\right)\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\right)=0\)
Vì \(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\ne0\)
Nên \(x+50=0\)
\(\Rightarrow\)\(x=-50\)
Vậy \(x=-50\)
Chúc bạn học tốt ~
\(50A=\frac{49}{1}+\frac{48}{2}+...+\frac{2}{48}+\frac{1}{49}\)
\(\Rightarrow50A=1+\left(1+\frac{48}{2}\right)+...+\left(1+\frac{2}{48}\right)+\left(1+\frac{1}{49}\right)\)
\(\Rightarrow50A=\frac{50}{50}+\frac{50}{2}+...+\frac{50}{48}+\frac{50}{49}\)
\(\Rightarrow A=\frac{1}{2}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)
Quy đồng mẫu số của các phân số trong tổng A
Dễ thấy \(2^5\)là lũy thừa với cơ số 2 lớn nhất nhỏ hơn 50 nên ta chọn \(MC=2^5.3.5.7...49\)
Gọi a2;a3;a4;...;a50 lần lượt là các thừa số phụ tương ứng
Lúc đó \(A=\frac{a_2+a_3+a_4+...+a_{50}}{2^4.3.5.7...49}\)
Ta thấy a2;a3;a4;...;a50 đều chứa thừa số 2 nên chúng chẵn ngoại trừ số a32
(có \(\frac{1}{32}=\frac{a_{32}\left(=3.5.7...49\right)}{2^4.3.5.7...49}\)
Phân số \(A=\frac{a_2+a_3+a_4+...+a_{50}}{2^4.3.5.7...49}\)có mẫu chẵn, tử lẻ nên A không là số tự nhiên