Phân tích thành nhân tử:
a) 9x^2+6xy+y^2
b)6x - 9 - x^2
c) x^2 + 4y^2 + 4xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(6x^3y^2.\left(2-x\right)+9x^2y^2\left(x-2\right)\)
\(=6x^3y^2.\left(2-x\right)-9x^2y^2\left(2-x\right)\)
\(=y^2.\left(2-x\right)\left(6x^3-9x^2\right)\)
\(=3x^2y^2.\left(2-x\right)\left(2x-3\right)\)
b. \(x^2-4x+4y-y^2\)
\(=\left(x^2-y^2\right)-\left(4x-4y\right)\)
\(=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)
9x2 + 6xy + y2
= (3x)2 + 2.3x.y + y2
= (3x + y)2
b) 6x - 9 - x2
= -(x2 - 6x + 9)
= -(x - 3)2
a, \(9x^2+6xy+y^2=\left(3x\right)^2+2\times3xy+y^2=\left(3x+y\right)^2\)
b, \(6x-9-x^2=-\left(x^2-2\times3x+3^2\right)=-\left(x-3\right)^2\)
c, \(x^2+4y^2+4xy=x^2+2\times2xy+\left(2y\right)^2=\left(x+2y\right)^2\)
c: \(=\left(5x-y\right)\left(5x+y\right)\)
e: \(=\left(x-2\right)\left(x-3\right)\)
a) x(4y-10x)
b)3(x+2y)+(x+1)
c)(5x-y)(5x+y)
d)5x(y-z)2
e)(x-3)(x-2)
f)(2x+y)3
a) $x^3-3x^2y+4x-12y$
$=(x^3-3x^2y)+(4x-12y)$
$=x^2(x-3y)+4(x-3y)$
$=(x-3y)(x^2+4)$
b) $4x^2-y^2+4y-4$
$=4x^2-(y^2-4y+4)$
$=(2x)^2-(y^2-2\cdot y\cdot2+2^2)$
$=(2x)^2-(y-2)^2$
$=[2x-(y-2)][2x+(y-2)]$
$=(2x-y+2)(2x+y-2)$
c) $9x^2-6x-y^2+2y$
$=(9x^2-y^2)-(6x-2y)$
$=[(3x)^2-y^2]-2(3x-y)$
$=(3x-y)(3x+y)-2(3x-y)$
$=(3x-y)(3x+y-2)$
$\text{#}Toru$
Bài 2:
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
phân tích thành nhân tử:
\(x^2-9=x^2-3^2=\left(x+3\right)\left(x-3\right)\)
\(4x^2-25=\left(2x\right)^2-5^2=\left(2x+5\right)\left(2x-5\right)\)
\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
\(9x^2+6xy+y^2=\left(3x\right)^2+2\cdot3x\cdot1+y^2=\left(3x+y\right)^2\)
\(x^2+4y^2+4xy=x^2+2\cdot x\cdot2y+\left(2y\right)^2=\left(x+2y\right)^2\)
a. \(x^3-0.25x=0\Rightarrow x\left(x^2-\frac{1}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\end{cases}}\)=> \(x\in\left\{0;\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(x^2-10x=-25\)\(\Rightarrow x^2-10x+25=0\)
\(\Rightarrow\left(x-5\right)^2=0\Rightarrow x-5=0\Rightarrow x=5\)
a, \(x^2-9=x^2-3x+3x-9\)
\(=x\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x+3\right)\)
b, \(4x^2-25=\left(2x\right)^2-5^2=\left(2x-5\right)\left(2x+5\right)\)
c, \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
d, \(9x^2+6xy+y^2=\left(3x\right)^2+2\left(3xy\right)+y^2\) \(=\left(3x+y\right)^2\)
e, \(6x-9-x^2=6x-18+9-x^2\) \(=6\left(x-3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x-3\right)\left(6-x-3\right)=\left(x-3\right)\left(3-x\right)\)
f, \(x^2+4y^2+4xy=x^2+2\left(2xy\right)+\left(2y\right)^2\)
\(\left(x+2y\right)^2\)
\(\)
a) 9x^2+6xy+y^2
=(3x+y)2
b)6x - 9 - x^2
=-(x2-6x+9)
=-(x-3)2
c) x^2 + 4y^2 + 4xy
=(x+2y)2