cho 2 số tự nhiên a và b thỏa mãn (a+b)(a+3b) chia hết cho 4 nhưng không chia hết cho 8.
Chứng minh rằng (a+b)(a+3b)(a+5b) chia hết cho 8 nhưng không chia hết cho 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
cho các số tự nhiên a b thỏa mãn a+b chia hết cho 5. Xét xem 4a+3b và 3a+b có chia hết cho 5 không ?
4a+3b chia hết cho 5
4a+3b+5a chia hết cho 5
9a+3b chia hết cho 5
3.(3a+b) chia hết cho 5
Mà ƯCLN(3;5)=1
=> 3a+b chia hết cho 5
Vậy....
Ủng hộ mk nha
Ta có: 7a+3b⋮23⇒6(7a+3b)⋮237a+3b⋮23⇒6(7a+3b)⋮23
⇒6(7a+3b)+(4a+5b)⋮23⇒6(7a+3b)+(4a+5b)⋮23
⇒46a+23b⋮23⇒23(2a+b)⋮23⇒46a+23b⋮23⇒23(2a+b)⋮23(Đúng)
Vậy 4a+5b⋮23
1.
Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:
+ Ví dụ 1. Các số 7; 9 và 2.
Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2.
+ Ví dụ 2. Các số 13; 19 và 4.
Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4.
+ Ví dụ 3. Các số 33; 67 và 10.
Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10.
Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán.
Qua bài tập 6 này, ta rút ra nhận xét như sau:
Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng.
Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p.
2.
Vì (a+b)⋮ma+b ⋮ m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)
Tương tự, vì a⋮ma ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h
Thay a = m. h vào (1) ta được: m.h + b = m.k
Suy ra b = m.k – m.h = m.(k – h) (tính chất phân phối của phép nhân với phép trừ).
Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có m(k−h)⋮mmk-h ⋮ m
Vậy b⋮m.b ⋮ m.
1. a chia het cho 20 va 12 suy ra a chia het cho 2;3;4;5.
vi 2
2 . 3 =6; 2 .4 =8
suy ra a chia 20 ko the du 8
a chia 12 ko the du 6
2.
=4a - 4b + 7b
=4 . [a - b] + 7b
a - b chia het cho 7 ; 7b chia het cho 7 suy ra 4a + 3b chia het cho 7
3.
a 3n - 3 + chia het n -1
3[n - 1] + 7 chia het n - 1
vi 3[n - 1]chia het chgo 7 suy ra 7 chia het n -1
vay n = 8