cho tam giác AOB , trên tia đối của OA,OB lấy theo thứ tự các điểm C và D sao cho OC=OD . Từ B kẻ BM vuông góc với AC,CN vuông góc với BD.Chứng minh:
a.tam giác COD là tam giác đều
b.AD=BC
c.tam giác MNP là tam giác đều
mong m.n giúp mik ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) tam giác MBC vuông tại M và có MP là trung tuyến => MP = 1/2 BC
tam giác NBC vuông tại N có NP là trung tuyến => NP = 1/2 BC
tam giác OAD có MN là đường trung bình => MN = 1/2 AD
tam giác OAD = tam giác OBC (c.g.c) => AD = BC
vậy MN = 1/2 AD = 1/2 BC
=> MP = NP = MN (đều = 1/2 BC)
=.> tam giác MNP đều
mk lỡ giải cách lớp 8 sorry!!! 56547654768
Tam giác MBC vuông tại M và có MP là trung tuyến => MP = 1/2 BC
Tam giác NBC vuông tại N và có NP là trung tuyến => NP = 1/2 BC
Tam giác OAD có MN là đường trung bình => MN = 1/2 AD
Tam giác OAD = tam giác OBC (trường hợp C-G-C) => AD = BC
Vậy MN = 1/2 AD = 1/2 BC
=> MP = NP = MN (vì đều = 1/2 BC)
=> Tam giác MNP đều
a: Sửa đề: Chứng minh ΔOCD=ΔOAB
Xét ΔOCD và ΔOAB có
OC=OA
\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)
OD=OB
Do đó: ΔOCD=ΔOAB
b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có
BO=DO
\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)
Do đó: ΔBHO=ΔDKO
=>BH=DK
c: ta có;ΔOBA=ΔODC
=>\(\widehat{OBA}=\widehat{ODC}\)
Xét ΔMBO và ΔNDO có
MB=ND
\(\widehat{MBO}=\widehat{NDO}\)
BO=DO
Do đó: ΔMBO=ΔNDO
=>\(\widehat{MOB}=\widehat{NOD}\)
mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)
nên \(\widehat{NOD}+\widehat{MOD}=180^0\)
=>\(\widehat{MON}=180^0\)
=>M,O,N thẳng hàng
a: Sửa đề: Chứng minh ΔOCD=ΔOAB
Xét ΔOCD và ΔOAB có
OC=OA
\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)
OD=OB
Do đó: ΔOCD=ΔOAB
b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có
BO=DO
\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)
Do đó: ΔBHO=ΔDKO
=>BH=DK
c: ta có;ΔOBA=ΔODC
=>\(\widehat{OBA}=\widehat{ODC}\)
Xét ΔMBO và ΔNDO có
MB=ND
\(\widehat{MBO}=\widehat{NDO}\)
BO=DO
Do đó: ΔMBO=ΔNDO
=>\(\widehat{MOB}=\widehat{NOD}\)
mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)
nên \(\widehat{NOD}+\widehat{MOD}=180^0\)
=>\(\widehat{MON}=180^0\)
=>M,O,N thẳng hàng