K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho Δ ABC cân tại A (góc A nhọn,AB>AC). Gọi H là trung điểm của BC.                                                                 a, Chứng minh Δ AHB= ΔAHC và AH vuông góc với BC tại H                                                                             b, Gọi M là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. Giả sử AB=20cm,AD=12cm.Chứng minh AD=AH. Tính độ dài đoạn thẳng AH.                             ...
Đọc tiếp

Cho Δ ABC cân tại A (góc A nhọn,AB>AC). Gọi H là trung điểm của BC.                                                                 

a, Chứng minh Δ AHB= ΔAHC và AH vuông góc với BC tại H                                                                             

b, Gọi M là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. Giả sử AB=20cm,AD=12cm.Chứng minh AD=AH. Tính độ dài đoạn thẳng AH.                                                                   

 c,Tia phân giác của góc BAD cắt tai CB tại N. Kẻ NK ⊥AD tại K. NQ ⊥AB tại Q. Chứng minh AQ=AK và ANQ=35độ + 1/4 BAC.                                                                                                                                                                                                                                           d, CD cắt AB tại S. Chứng minh BC<3 ×AS.                                                                                                                                                                                                                                                      (vẽ hình cho em với ạ giúp em ạ)

0

c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có 

AN chung

\(\widehat{KAN}=\widehat{QAN}\)

Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)

Suy ra: AK=AQ(hai cạnh tương ứng) 

a) Xét ΔAHB và ΔAHC có 

AB=AC(ΔBAC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH\(\perp\)BC tại H

b) Xét ΔADM và ΔBHM có 

\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)

MA=MB(M là trung điểm của AB)

\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)

Do đó: ΔADM=ΔBHM(g-c-g)

Suy ra: AD=BH(hai cạnh tương ứng)

mà AD=12cm(gt)

nên BH=12cm

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=20^2-12^2=256\)

hay AH=16(cm)

26 tháng 7 2021

Thanks ạ :33

27 tháng 3 2022

a) Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:

AB = AC (\(\Delta ABC\) cân tại A).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta AHB=\Delta AHC\) (cạnh huyền - góc nhọn).

b) Xét \(\Delta DHC:\)

DI là trung tuyến (I là trung điểm của HC).

DI là đường cao \(\left(DI\perp HC\right).\)

\(\Rightarrow\Delta DHC\) cân tại D.

27 tháng 3 2022

lm sao để viết dấu gọc :v

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: góc DAH=góc HAC=góc DHA

=>ΔDAH cân tại D

=>góc DHB=góc DBH

=>DH=DB=DA
=>D là trung điểm của AB

=>DH=1/2AB

12 tháng 5 2023

mình đg cần câu c bạn biết làm câu c không

 

22 tháng 11 2016

a/ Xét tam giác AHB và tam giác AHC có:

AB = AC (GT)

AH: cạnh chung

góc HAB = góc HAC (GT)

=> tam giác AHB = tam giác AHC (c.g.c)

b/ Ta có: tam giác AHB = tam giác AHC (câu a)

=> góc B = góc C (2 góc tương ứng)

c/ Ta có: tam giác AHB = tam giác AHC (câu a)

=> BH = HC (2 cạnh tương ứng) (1)

=> góc AHB = góc AHC (2 góc tương ứng) (2)

Mà góc AHB + góc AHC = 1800

=> góc AHB = AHC = 900 (3)

Từ (1);(2);(3) => AH là trung trực của BC

Xét tam giác AHB và tam giác EHC có:

góc AHB = góc EHC (đối đỉnh)

BH = CH (đã chứng minh)

HE = HA (GT)

=> tam giác AHB = tam giác EHC

mk xin lỗi nhé, khuya rồi mà mai mk phải đi hc sớm

nên giờ mk giải đến đây, mai mk giải tiếp nhé

23 tháng 11 2016

Mk giải tiếp nhé:

e/ Ta có: tam giác AHB = tam giác EHC (câu d)

=> \(\widehat{BAH}\)=\(\widehat{HEC}\) (2 góc tương ứng)

Mà góc BAH, góc HEC ở vị trí so le trong

=> AB//CE (đpcm)

f/ Xét tam giác AHC và tam giác BHE có:

góc AHC = góc BHE (đối đỉnh)

AH = HE (GT)

BH = HC (đã chứng minh)

=> tam giác AHC = tam giác BHE (c.g.c)

Ta có: \(\widehat{ABH}\)=\(\widehat{ECH}\) (vì tam giác ABH = tam giác CHE) (1)

Ta lại có: \(\widehat{HBE}\)=\(\widehat{ACH}\)(vì tam giác AHC = tam giác BHE) (2)

Từ (1), (2) => \(\widehat{ABH}\)+\(\widehat{HBE}\)=\(\widehat{ECH}\)+\(\widehat{ACH}\)

=> \(\widehat{ABE}\)=\(\widehat{ACE}\) (đpcm)

h/ Ta có: tam giác AHC = tam giác BHE (câu f)

=> \(\widehat{CAH}\)=\(\widehat{HEB}\) (2 góc tương ứng)

Mà góc CAH, góc HEB ở vị trí so le trong

=> BE//AC (đpcm)

g/ Xét tam giác BAC và tam giác BEC có:

BC: cạnh chung

AB = CE (vì tam giác ABH = tam giác ECH)

AC = BE (vì tam giác AHC = tam giác BHE)

=> tam giác BAC = tam giác BEC (c.c.c)

=>\(\widehat{ABC}\)=\(\widehat{EBC}\) (2 góc tương ứng)

=> BC là phân giác của góc ABE

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

a)

Cách 1 là:

Xét 🔺AHB vuông tại H1 và 🔺AHB vuông tại H2 ,ta có: 

          AC=AB(vì là tam giác cân)

          góc B= góc C(vì là tam giác cân)

          =>🔺AHC=🔺AHC cạnh huyền-góc nhọn)

        => H là trung điểm của BC

Cách 2:

Xét 🔺AHC vuông tại H1 và 🔺 AHB vuông tại H2 ,ta có: 

           AB=AC(vì là tam giác cân)

            AH là cạnh chung

      => 🔺AHC=🔺 AHB ( cạnh huyền góc vuông)

      => H là trung điểm của BC

b) 

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔABC có

H là trung điểm của CB

HD//AB

=>D là trung điểm của AC

ΔAHC vuông tại H có HD là trung tuyến

nên DH=DC

=>ΔDHC cân tại D

=>DM vuông góc HC

=>DM//AH