K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

\(\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{28}{49}=\dfrac{28:7}{49:7}=\dfrac{4}{9}\\ Vậy:x=\dfrac{4.9}{4}=9\\ y=\dfrac{4.21}{9}=\dfrac{28}{3}\)

31 tháng 7 2023

\(\dfrac{x}{2}=\dfrac{3}{y}\\ \Leftrightarrow x.y=2.3=6\\ Vậy:\left[{}\begin{matrix}\left(x;y\right)=\left(1;6\right)=\left(6;1\right)\\\left(x;y\right)=\left(2;3\right)=\left(3;2\right)\end{matrix}\right.\)

25 tháng 10 2021

Câu 3:

\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)

\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)

Câu b:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)

\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)

Câu c:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)

\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)

Câu d:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)

\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)

Câu e:

\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)

\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)

 

25 tháng 10 2021

3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)

4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)

\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)

5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)

6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)

\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)

7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)

10 tháng 9 2016

\(a,2^{x+1}=3^y=12^x\Rightarrow2^{x+1}.3^y=2^{2x}.3y\)

\(\Rightarrow\frac{2^x}{2^{x+1}}=\frac{3^y}{3^x}\Rightarrow2^{2-x-x-1}=3^{y-x}\)

3 tháng 11 2018

\(=\frac{15\left(x-y\right)^5}{5\left(x-y\right)^3}-\frac{10\left(x-y\right)^4}{5\left(x-y\right)^3}+\frac{20\left(x-y\right)^3}{5\left(x-y\right)^3}\)

\(=3\left(x-y\right)^5-2\left(x-y\right)^4+4\left(x-y\right)^3\)

3 tháng 11 2018

sửa dòng cuối

\(=3\left(x-y\right)^2-2\left(x-y\right)+4\)

18 tháng 8 2021

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-1}{30+60-28}=\dfrac{186}{62}=3\)

\(\dfrac{x}{15}=3\Rightarrow x=45\\ \dfrac{y}{20}=3\Rightarrow y=60\\ \dfrac{z}{28}=3\Rightarrow x=84\)

b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-20}{-4}=5\)

\(\dfrac{x}{2}=5\Rightarrow x=10\\ \dfrac{y}{3}=5\Rightarrow y=15\\ \dfrac{z}{4}=5\Rightarrow z=20\)

c)  x : y :z : t = 3 : 4 : 5 :6\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{t}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{t}{6}=\dfrac{x+y+z+t}{3+4+5+6}=\dfrac{3,6}{18}=\dfrac{1}{5}\)

\(\dfrac{x}{3}=\dfrac{1}{5}\Rightarrow x=\dfrac{3}{5}\\ \dfrac{y}{4}=\dfrac{1}{5}\Rightarrow y=\dfrac{4}{5}\\ \dfrac{z}{5}=\dfrac{1}{5}\Rightarrow z=1\\ \dfrac{t}{6}=\dfrac{1}{5}\Rightarrow t=\dfrac{6}{5}\)

18 tháng 8 2021

d) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)

\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=-\dfrac{49}{7}=-7\)

\(\dfrac{x}{10}=-7\Rightarrow x=-70\\ \dfrac{y}{15}=-7\Rightarrow y=-105\\ \dfrac{z}{12}=-7\Rightarrow z=-84\)

e) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)

\(\dfrac{x}{2}=4\Rightarrow x=8\\ \dfrac{y}{3}=4\Rightarrow y=12\\ \dfrac{z}{4}=4\Rightarrow z=16\)

5 tháng 8 2021

Trả lời:

7, 5( x + y )2 + 15( x + y )

= 5( x + y )( x + y + 3 )

9, 7x( y - 4 )2 - ( 4 - y )3 

= 7x ( 4 - y )2 - ( 4 - y )

= ( 4 - y )2 ( 7x - 4 + y )

11, ( x + 1 )( y - 2 ) - ( 2 - y )2

= ( x + 1 )( y - 2 ) - ( y - 2 )2

= ( y - 2 )( x + 1 - y + 2 )

= ( y - 2 )( x - y + 3 )

8, 9x ( x - y ) - 10 ( y - x )2 

= 9x ( x - y ) - 10 ( x - y )2

= ( x - y )[ ( 9x - 10 ( x - y ) ]

= ( x - y )( 9x - 10x + 10y )

= ( x - y )( 10y - x )

10, ( a - b )2 - ( a + b )( b - a ) 

= ( b - a )2 - ( a + b )( b - a )

= ( b - a )( b - a - a - b )

= - 2a( b - a )

= 2a ( a - b )

12, 2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )

= 2x ( x - 3 ) + y ( x - 3 ) - ( x - 3 )

= ( x - 3 )( 2x + y - 1 )

28 tháng 11 2016

Bảng 1:

Xét các tích xy = 1.120 = 2.60 = 4.30 = 5.24 = 8.15 = 120

=> x và y là hai đại lượng tỉ lệ nghịch

Bảng 2:

Xét các tích xy = 2.30 = 3.20 = 4.15 # 5.12,5

=> x và y không phải là hai đại lượng tỉ lệ nghịch

19 tháng 11 2017

a, Ta có: x1.y1 = x2.y2 = x3.y3 = x4.y4 = x5.y5 = 120 Vậy hai đại lượng x và y tỉ lệ ngịch với nhau
b, Ta có: x1.y1 = x2.y2 = x3.y3 = x5.y5 \(\ne\) x4.y4 Vậy hai đại lượng x và y không tỉ lệ ngịch với nhau