Bài 1 : So sánh
1) - 3 \(\sqrt{13}\) và -9
2) \(\sqrt{15}-1\) và \(\sqrt{10}\)
3)5 và \(\sqrt{8}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(A=\sqrt{26}+\sqrt{10}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(B=\sqrt{64}=8\)
Do đó: A>B
a) Ta có: \(2=\sqrt{4}\)
Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)
b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)
Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)
c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)
\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)
Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)
\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)
B2:
3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)
\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)
\(=\sqrt{2020}-1\)
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
a) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\\\Rightarrow2\sqrt{31}>10\)
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....
1) `-3\sqrt13=-3\sqrt13`
`-9=-3\sqrt9`
`\sqrt13>\sqrt9`
`=> -3\sqrt13 < -3\sqrt9`
`=> -3\sqrt13 < 9`.
2) `\sqrt15 < \sqrt16`
`<=> \sqrt15-1 < \sqrt16-1`
`<=> \sqrt15-1 < 3 < \sqrt10`
`=> \sqrt15-1 <\sqrt10`
3) `5=4+1=\sqrt16+1`
`\sqrt8+1=\sqrt8+1`
`=> 5>\sqrt8+1`
1) \(-3\sqrt{13}=-\sqrt{117}< -\sqrt{81}=-9\)
3) Ta có: \(5^2=25=9+16\)
\(\left(2\sqrt{2}+1\right)^2=9+4\sqrt{2}\)
mà \(16>4\sqrt{2}\)
nên \(5>2\sqrt{2}+1\)