K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 7

Lời giải:

$A=27n^3-45n^2+24n-4=(3n-2)^2(3n-1)$
Để $A$ là số nguyên tố thì 1 trong 2 thừa số $3n-2$ hoặc $3n-1$ phải là $1$ và số còn lại là số nguyên tố.

Nếu $3n-2=1$ thì $n=1$. Khi đó: $A=1^2.2=2$ là số nguyên tố (tm)

Nếu $3n-1=1$ thì $n=\frac{2}{3}\not\in\mathbb{N}$ (loại)

Vậy $n=1$.

AH
Akai Haruma
Giáo viên
28 tháng 9

Lời giải:
Để $p=(n+4)(2n-1)$ là snt thì 1 trong 2 thừa số của nó bằng $1$ và thừa số còn lại là snt.

Hiển nhiên $n+4>1$ với mọi $n$ tự nhiên.

$\Rightarrow 2n-1=1\Rightarrow n=1$

Khi đó: $p=5.1=5$ là snt (thỏa mãn)

14 tháng 12 2016

A=n+3;      B=n^2+12.n+19; C=4n^2+24n+37

B=2A^2+1

C=4A^2+1 

n=0=>\(\hept{\begin{cases}A=3\\B=19\\C=37\end{cases}}\)  n= nhận

\(Voi.n=2\left(chanduynhat\right)\)\(\hept{\begin{cases}A=5\\B=51\\C=101\end{cases}}\) Loại B chia hết cho 3

với n khác >2 vì A nguyên tố => n=2k vì nếu n lẻ=>A không nguyên tố.

k chỉ thể là \(\orbr{\begin{cases}3t+1\\3t+2\end{cases}}\)  Vì nếu k=3t thì A chia hết cho 3 ko ntố

=> \(\orbr{\begin{cases}n=2\left(3t+1\right)\\n=2\left(3t+2\right)\end{cases}}\)\(A=\orbr{\begin{cases}6t+5\\6t+7\end{cases}}\)\(A^2=\orbr{\begin{cases}36t^2+60t+25\\36t^2+84t+49\end{cases}}\)

\(B=\orbr{\begin{cases}2\left(36t^2+60t+25\right)+1=3n+51\\2\left(36t^2+84t+49\right)+1=3m+99\end{cases}}\)=> B chia hết cho 3

kết luận: n =0 là giá trị duy nhất thỏa mãn đề bài

17 tháng 9 2016

x=5,6,7

17 tháng 9 2016

x=5;6;7

ủng hộ tớ nha

5 tháng 4 2016

n=0

nha cac bn

5 tháng 4 2016

Bài này nè : http://olm.vn/hoi-dap/question/507568.html

22 tháng 3 2016

Bạn lấy ở đâu mà nhiều vậy?

Cho mình biết nha.

22 tháng 3 2016

vì n là STN =>n=o hoặc n thuộc N*

+nếu n=0 

     5^0+30=1+30=31

Mà 31 là số nguyên tố

=>n=0 thoả mãn

+nếu n thuộc N*=>5^n chia hết cho 5 mà 30 chia  hết cho 5

=>5^n+30 chia hết cho 5

Mà 5^n+30>55

=>5^n+30 là hợp số

=>Mâu thuẫn với đề bài

Vậy n=0 thì 5n+30 là số nguyên tố