K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CD là đường cao ứng với cạnh AB(gt)

BE cắt CD tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH\(\perp\)BC

mà HM\(\perp\)BC(gt)

và AH,HM có điểm chung là H

nên A,H,M thẳng hàng(đpcm)

b) Xét ΔBMH vuông tại M và ΔBEC vuông tại E có 

\(\widehat{EBC}\) chung

Do đó: ΔBMH\(\sim\)ΔBEC(g-g)

Suy ra: \(\dfrac{BM}{BE}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BE\cdot BH=BM\cdot BC\)

Xét ΔCMH vuông tại M và ΔCDB vuông tại D có

\(\widehat{DCB}\) chung

Do đó: ΔCMH\(\sim\)ΔCDB(g-g)

Suy ra: \(\dfrac{CM}{CD}=\dfrac{CH}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CH\cdot CD=CM\cdot CB\)

Ta có: \(BE\cdot BH+CM\cdot CD\)

\(=BM\cdot BC+CM\cdot BC\)

\(=BC^2\)(đpcm)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=15^2-9^2=144\)

=>\(AC=\sqrt{144}=12\left(cm\right)\)

b: Xét ΔCAB vuông tại A và ΔCDE vuông tại D có

CA=CD

\(\widehat{ACB}=\widehat{DCE}\)(hai góc đối đỉnh)

Do đó: ΔCAB=ΔCDE

=>CB=CE

=>C là trung điểm của BE

Xét ΔFBE có

FC là đường cao

FC là đường trung tuyến

Do đó: ΔFBE cân tại F

 

7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs

1:

a: \(BC=\sqrt{6^2+8^2}=10cm\)

=>AM=10/2=5cm

b: Xét ΔEBC có

EM vừa là đường cao, vừa là trung tuyến

=>ΔEBC cân tại E

Bài 2:

Xét ΔBAE vuông tại A và ΔBHE vuông tại H co

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH và EA=EH

=>BE là trung trực của AH