Tìm x, Biết:
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=-2,5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x\left(x^2+x+1\right)-x^2\left(x+1\right)=2x+5\)
\(\Rightarrow x^3+x^2+x-x^3-x^2-2x=5\)
\(\Rightarrow-x=5\Rightarrow x=-5\)
b, \(\left(x-3\right)\left(x-2\right)-\left(x+1\right)\left(x-5\right)=0\)
\(\Rightarrow x^2-2x-3x+6-\left(x^2-5x+x-5\right)=0\)
\(\Rightarrow x^2-5x+6-x^2+4x+5=0\)
\(\Rightarrow-x=-5-6\Rightarrow x=11\)
c, \(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow x\left(2x^2+10x-x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)
\(\Rightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Rightarrow-6x=3,5+4,5\Rightarrow-6x=8\Rightarrow x=-\dfrac{4}{3}\)
Chúc bạn học tốt!!!
Bạn ơi ở câu a bạn làm sai rùi
\(\left(-x^2\right).\left(-1\right)=+x^2\)chứ sao lại \(-x^2\)
a)\(\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow6x=36\Leftrightarrow x=6\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
a) \(x-2=\left(x-2\right)^2\)
\(\left(x-2\right)^2-\left(x-2\right)=0\)
\(\left(x-2\right)\left(x-2-1\right)=0\)
\(\left(x-2\right)\left(x-3\right)=0\)
\(\Rightarrow x-2=0\) hoặc \(x-3=0\)
*) \(x-2=0\)
\(x=2\)
*) \(x-3=0\)
\(x=3\)
Vậy \(x=2;x=3\)
b) \(x+5=2\left(x+5\right)^2\)
\(2\left(x+5\right)^2-\left(x+5\right)=0\)
\(\left(x+5\right)\left[2\left(x+5\right)-1\right]=0\)
\(\left(x+5\right)\left(2x+10-1\right)=0\)
\(\left(x+5\right)\left(2x+9\right)=0\)
\(\Rightarrow x+5=0\) hoặc \(2x+9=0\)
*) \(x+5=0\)
\(x=-5\)
*) \(2x+9=0\)
\(2x=-9\)
\(x=-\dfrac{9}{2}\)
Vậy \(x=-5;x=-\dfrac{9}{2}\)
c) \(\left(x^2+1\right)\left(2x-1\right)+2x=1\)
\(\left(x^2+1\right)\left(2x-1\right)+2x-1=0\)
\(\left(x^2+1\right)\left(2x-1\right)+\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(x^2+1+1\right)=0\)
\(\left(2x-1\right)\left(x^2+2\right)=0\)
\(\Rightarrow2x-1=0\) hoặc \(x^2+2=0\)
*) \(2x-1=0\)
\(2x=1\)
\(x=\dfrac{1}{2}\)
*) \(x^2+2=0\)
\(x^2=-2\) (vô lí)
Vậy \(x=\dfrac{1}{2}\)
d) Sửa đề:
\(\left(x^2+3\right)\left(x+1\right)+x=-1\)
\(\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2+3+1\right)=0\)
\(\left(x+1\right)\left(x^2+4\right)=0\)
\(\Rightarrow x+1=0\) hoặc \(x^2+4=0\)
*) \(x+1=0\)
\(x=-1\)
*) \(x^2+4=0\)
\(x^2=-4\) (vô lí)
Vậy \(x=-1\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a)\(2\left|2x-3\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=\frac{1}{4}\\2x-3=-\frac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13}{8}\\x=\frac{11}{8}\end{matrix}\right.\)
Vậy....
b)\(7,5-3\left|5-2x\right|=-4,5\)
\(\Leftrightarrow\left|5-2x\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{9}{2}\end{matrix}\right.\)
VẬy...
c)\(\left|3x-4\right|+\left|5-2x\right|=0\)
Có: \(\left|3x-4\right|\ge0với\forall x\\ \left|5-2x\right|\ge0với\forall x\)
\(\Rightarrow\left[{}\begin{matrix}3x-4=0\\5-2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow x\in\varnothing\)
<=>(2x2-x)(x+5)-(2x3+9x2+x+4,5)=-2,5
<=>(2x3+10x2-x2-5x)-2x3-9x2-x-4,5+2,5=0
<=>2x3+10x2-x2-5x-2x3-9x2-x-4,5+2,5=0
<=>-9x=2
<=>x=-2/9