Phân tích đa thức thành nhân tử bằng phương pháp mhóm hạng tử
a) x^3 + x^2 - x - 1
b) a^3 + a^2.b - a^2.c - a.b.c
c) a.x^2 - a.y - b.x^2 + c.y +b.y - c.x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.x-c.y+a.y+b.x-c.x+b.y\)
\(=\)\(\left(ax+bx-cx\right)+\left(ay+by-cy\right)\)
\(=\)\(x.\left(a+b-c\right)+y.\left(a+b-c\right)\)
\(=\)\(\left(-3\right)x+\left(-3\right)y\)
\(=\)\(\left(-3\right).\left(x+y\right)\)
\(=\)\(\left(-3\right).15\)
\(=\)\(-45\)
Chúc bạn học tốt
Câu 1:\(x^2.y+x.y^2-x-y=x.\left(x.y-1\right)+y.\left(x.y-1\right)=\left(x+y\right).\left(x.y-1\right)\)
Câu 3:\(a.x^2+a.y-b.x^2-b.y=x^2.\left(a-b\right)+y.\left(a-b\right)=\left(x^2+y\right).\left(a-b\right)\)
\(x^3-2x^2=x^2\left(x-2\right)\)
\(y^2+2y+1-x^2=\left(y+1\right)^2-x^2=\left(y+1-x\right)\left(y+1+x\right)\)
\(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)
c1 = xy(x+y) - (x+y)
= (x+y)(xy-1)
c2 đề sai
c3 = a(x2+y)-b(x2+y)
= (x2+y)(a-b)
mk làm mẫu cho mấy câu thui nha (mỏi tay quá) hiii. vì đây là toán dạng cơ bản
câu 1:
x2y+xy2-x-y
=(x2y-x)+(xy2y)
=x(xy-1)+y(xy-1)
=(x+y)(xy-1)
Câu 2:sai đề
Câu 3:
ax2+ay-bx2-by
=(ax2+ay)-(bx2+by)
=a(x2+y)-b(x2+y)
=(a-b)(x2+y)
Câu 4:
x(x+1)2+x(x-5)-5(x+1)2
=(x+1)2(x-5)+x(x-5)
=(x+5)[(x+1)2+x]
=(x+5)(x2+3x+1)
Câu 5:
3x2-12y2
=3(x2-4y2)
=3[(x)2-(2y)2]
=3(x-2y)(x+2y)
Câu 6:
5xy2-10xyz+5xz2
=5x(y2-2yz+z2)
=5(z-y)2
a, a.x+a.y+b.x+b.y
= a(x+y) + b(x+y) = (x+y)(a+b)=17.(-2)=-34
b, a.x-a.y+b.x-b.y
= a(x-y)+b(x-y)
=(x-y)(a+b)=-7(-1)=7
:)
a) a.x + a.y + b.x + b.y
= a.(x + y) + b.(x + y)
= a . 17 + b . 17
= (a +b) . 17
= -2 . 17 = -34
b) a.x - a.y + b.x - b.y
= a.(x - y) + b.(x - y)
= a . (-1) + b.(-1)
= (a + b) . (-1)
= -7 . (-1) = 7
a) \(=x^2-2x-4x+8\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
c) \(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1-6\right)\)
\(=x\left(x+1\right)\left(x-7\right)\)
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
a) x^3 + x^2 - x - 1
=(x3+x2)+(-x-1)
=x2.(x+1)-(x+1)
=(x+1)(x2-1)
=(x+1)(x-1)(x+1)
=(x+1)2(x-1)
b) a^3 + a^2.b - a^2.c - a.b.c
=(a3+a2b)+(-a2c-abc)
=a2.(a+b)-ab.(a+b)
=(a+b)(a2-ab)
=a.(a+b)(a-b)