Chứng minh rằng : 7+72+73+74+75+76+77+78 chia hết cho 50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 7+7^2+7^3+... + 7^8
=( 7+7^2) +( 7^3 +7^4)+...+(7^7 +7^8)
= 50 + 7^2(7+7^2)+...+ 7^6(7+ 7^2)
= 50 + 7^2 . 50+...+ 7^6 . 50
= 50.( 1+7^2 + ... + 7^6) chia hết cho 50
Vậy 7 + 7^2 + 7^3 + 7^4 + 7^5 +7^6 +7^7 +7^8 chia hết cho 50
k cho mk nha
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\\ A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\\ A=\left(1+7+7^2+7^3\right)\left(7+7^5\right)=400\left(7+7^5\right)⋮5\)
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$
`2A - A = - 1 + 2^{42}`$\\$
hay `A = -1 + 2^{42}`$\\$
7+72+73+...+78=(7+73)+(75+77)+(72+74)+(76+78)=7(1+72)+75(1+72)+72(1+72)+76(1+72)=50.7+50.75+50.72+50.76
=50.(7+72+75+76) chia het cho 50. goog luck