TÌM x
\(\frac{x^2-2x}{\left(x-1\right).\left(x+2\right)}\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Leftrightarrow\left|x-3\right|=0;\left|y-2x\right|=0;\left|2z-x+y\right|=0\)
\(\Leftrightarrow x=3;y=2x;2z=-y+x\)
Ta có : y = 2x => y = 2 . 3 = 6
và 2z = -y + x => 2z = -6 + 3 = -3 => z = \(-\frac{3}{2}\)
b) \(\Leftrightarrow\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|=0\) (vĩ mỗi số hạng trong tổng đều lớn hơn hoặc bằng 0)
\(\Leftrightarrow\left|x-y\right|=0;\left|2y+x-\frac{1}{2}\right|=0;\left|x+y+z\right|=0\)
\(\Leftrightarrow x=y;2y+x=\frac{1}{2};x+y=-z\)
Vì x = y nên \(2y+x=3y=\frac{1}{2}\Rightarrow x=y=\frac{1}{2}:3=\frac{1}{6}\)
và \(-z=x+y=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\Rightarrow z=-\frac{1}{3}\)
B1:
Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)
Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:
\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
a/ \(\left|1-2x\right|>7\Leftrightarrow\left[{}\begin{matrix}1-2x=7\\1-2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x< -6\\2x< 8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\)
b/ \(\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\) ( vì -5<0)
\(\Leftrightarrow x>3\)
Điều kiện: x - 1 \(\ne\) 0 và x+ 2 \(\ne\) 0
=> \(\frac{x\left(x-2\right)}{\left(x-1\right)\left(x+2\right)}\le0\) => (x - 2)(x -1)x(x +2) \(\le\) 0
=> Trong 4 số có 3 số dương ; 1 số âm hoặc 3 số âm và 1 số dương
Ta có nhận xét: x - 2 < x - 1 < x < x + 2 ( Vì -2 < -1 < 0 < 2). Do đó:
+) Nếu có 3 số dương; 1 số âm thì x - 2 \(\le\) 0 < x - 1 < x < x + 2
=> x - 2 \(\le\) 0 và x - 1 > 0 => x \(\le\) 2 và x > 1 Hay 1 < x \(\le\)2
+) Nếu có 3 số âm và 1 số dương thì x - 2 < x -1 < x \(\le\) 0 < x + 2
=> x \(\le\) 0 và x+ 2 > 0
=> x \(\le\) 0 và x > -2
Hay -2 < x \(\le\) 0
Vậy 2-< x \(\le\) 0 hoặc 1 < x \(\le\) 2