Cho B= 201412-1712. CM B chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
gọi thương của hai phép chia lần lượt là P và Q ,ta có
a=5P+1
b=5Q+4
=> (ab)+1<=>(5P+1)(5Q+4)+1
\(\Leftrightarrow25PQ+20P+5Q+5\)
\(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)
=>ab+1 chia hết cho 5
Ta có a chia 5 dư 1 ,
b chia 5 dư 4,
=> ab chia 5 dư 4
=> ab+1 chia hết cho 5
Ta có :
(a+3) ⋮ 5 => (a+3)2 ⋮ 5 => (a2+6a+9) ⋮ 5
(b+4) ⋮ 5 => (b+4)2 ⋮ 5 => (b2+8b+16) ⋮ 5
=> (a2+6a+9+b2+8b+16) ⋮ 5
=> (a2+5a+a+b2+3b+5b+25) ⋮ 5
Vì 5a⋮ 5 ; 5b⋮ 5 ; 25⋮ 5
=> (a2+a+b2+3b) ⋮ 5
Lại có :
(a+3) ⋮ 5
(b+4) ⋮ 5 => 3(b+4) ⋮ 5 => (3b+12) ⋮ 5
=> (a+3+3b+12) ⋮ 5
=> (a+15+3b) ⋮ 5
=> (a+3b) ⋮ 5 (Vì 15 ⋮ 5 )
Mà (a2+a+b2+3b) ⋮ 5
=> (a2+b2) ⋮ 5
Vậy (a2+b2) ⋮ 5
\(A=2+2^2+......+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3⋮3\)
\(2+2^2+2^3+....+2^{58}+2^{59}+2^{60}\)
\(=2\left(1+2+4\right)+....+2^{58}\left(1+2+4\right)\)
\(=2\cdot7+.....+2^{58}\cdot7⋮7\)