tìm số có ba chữ số biết rằng nếu viết các chữ số theo thứ tự ngược lại thì được 1 số mới lớn hơn số ban đầu 92 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a b c (0<a, c≤9; 0≤b≤9)
Theo đề ra ta có: c b a = 792 + a b c
=>100c + 10b + a = 792 + 100a + 10b + c
=> c – a = 8 => c = 9; a = 1
(Do a không thể là số 0, thử với a = 1 thỏa mãn, a = 2 thì c = 10 không thỏa mãn nên chỉ có một giá trị duy nhất của a
từ đó tìm được một giá trị duy nhất của c.)
Vậy số cần tìm là 1 b 9 với b ∈ {0;1;2;3;4;5;6;7;8;9}
Có 10 đáp số: 109; 119; 129; …; 199
Gọi số cần tìm là abc
ta có : cba = abc + 792
cx 100 + bx10 + a = ax100+bx10+c+792
cx99 = a x 99 + 792
c = a + ( 792 : 99 ) = a + 8
=> a = 1
a = 1 , ta có : c = 8 + 1 = 9
b nhận mọi giá trị . ta được các số : 109 , 119 , 129 , 139 , 149 , 159 , 169 ,179 , 189 , 199 .
CHÚC BẠN MAY MẮN . CÓ GÌ THẮC MẮC CỨ HỎI MÌNH NHÉ !
@ xyz @ Dòng thứ 3 của em tại sao từ cb0 xuống dòng thứ 4 lại thành bc.10. Em kiểm tra lại nhé!
Theo đề: cba - abc = 792 => 99c - 99a = 792 => c - a = 8
Mà c <=9 và a khác 0 => c = 9 và a = 1.
Ta làm phép đặt tính: 1b9 + 729 = 9b1. Hàng đơn vị nhớ 1 vào hàng chục và hàng chục nhớ 1 vào hàng đv nên b + 10 = 1b => b nhận mọi giá trị từ 1 đến 9.
Gọi số cần tìm là a b c (0<a, c≤9; 0≤b≤9)
Theo đề ra ta có: c b a = 792 + a b c
=>100c + 10b + a = 792 + 100a + 10b + c
=> c – a = 8 => c = 9; a = 1
(Do a không thể là số 0, thử với a = 1 thỏa mãn, a = 2 thì c = 10 không thỏa mãn nên chỉ có một giá trị duy nhất của a
từ đó tìm được một giá trị duy nhất của c.)
Vậy số cần tìm là 1 b 9 với b ∈ {0;1;2;3;4;5;6;7;8;9}
Có 10 đáp số: 109; 119; 129; …; 199
#)Giải :
Gọi số cần tìm là abc (a,b,c là các chữ số ; a khác 0 ; b,c > a)
Theo đầu bài, ta có : cba - abc = 792
<=> (100c + 10b + a) - (100a + 10b + c) = 792
<=> 99c - 99a = 99(c - a) = 792
<=> c - a = 8
Vì c > a => c = 9 và a = 1
=> b là số bất kì từ a ≤ b ≤ c hay 1 ≤ b ≤ 9
Gọi số có 3 chữ số cần tìm là abc (a;b;c < 10) ; (a;b;c\(\inℕ^∗\))
Theo bài ra ta có :
cba - abc = 792
=> (100c + 10b + 10a) - (100a + 10b + c) = 792
=> 100c + 10b + 10a - 100a - 10b - c = 792
=> (100c - c) + (10b - 10b) + (a - 100a) = 792
=> 99c - 99a = 792
=> 99.(c - a) = 792
=> c - a = 792 : 99
=> c - a = 8 (1)
Từ điều kiện và (1) ta có :
c = 9 ; a = 1 ; b \(\in\){0;1;2;3;4;5;6;7;8;9}
=> abc \(\in\){109;119;129;139;149;159;169;179;189;199}
Gọi số tự nhiên đó là ab (ab >10). Theo đề bài ta có :
Số đó gấp 4 lần tổng các chữ số của nó nên ta có phương trình:
\(ab=4\left(a+b\right)\Leftrightarrow10a+b=4a+4b\) \(\Leftrightarrow10a-4a+b-4b=0\Leftrightarrow6a-3b=0\) ⇔ 2a-b=0(1)
Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị nên ta có phương trình :
\(ba-ab=36\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow9b-9a=36\Leftrightarrow b-a=4\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a-b=0\left(1\right)\\b-a=4\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được : a=4 Thay vào (2) ta được:
\(b-4=4\Leftrightarrow b=8\) ⇒ab=48. Vậy...
Gọi số cần tìm là : abc
cba = abc + 792
cx100 + bx10 + a = a x 100 + b x 10 + c + 792
c x 99 = a x 99 + 792
c = a + ( 792 : 99 ) = a + 8
=> a = 1
ta có : c = 8 + 1 = 9
b nhận mõi giá trị ta được các số : 109 , 119 , 129 , 139 , 149 , 159 , 169 , 179 , 189 , 199
chúc bn may mắn hok thật tốt
Gọi số cần tìm là : abc
cba = abc + 792
cx100 + bx10 + a = a x 100 + b x 10 + c + 792
c x 99 = a x 99 + 792
c = a + ( 792 : 99 ) = a + 8
=> a = 1
ta có : c = 8 + 1 = 9
b nhận mõi giá trị ta được các số : 109 , 119 , 129 , 139 , 149 , 159 , 169 , 179 , 189 , 199