K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

\(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\)

\(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}\)

\(a+\sqrt{a}+1\)

17 tháng 7 2021

Bổ sung: ĐKXĐ: \(a\ge0;a\ne1\)

5 tháng 8 2023

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))

\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)

\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)

\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)

\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)

12 tháng 12 2016

Điều kiện: \(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}\)

Ta có:

\(1P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)

\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)

29 tháng 6 2018

không hiểu nhan

29 tháng 3 2020

\(ĐKXĐ:a>1\)

\(P=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(\Leftrightarrow P=\left(\frac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(\Leftrightarrow P=\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(\Leftrightarrow P=\frac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(\Leftrightarrow P=\frac{2}{a-1}\)

31 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)

Ta có :

 \(P=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\frac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\frac{\left(a+\sqrt{a}-2\right)-\left(a-\sqrt{a}-2\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{2}{a-1}\)

Vậy \(P=\frac{2}{a-1}\left(a>0;a\ne1\right)\)

1 tháng 8 2019

\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a-\sqrt{a}\right)\left(a\sqrt{a}+1\right)}{\left(a-\sqrt{a}\right)\left(a+\sqrt{a}\right)}\)

\(=\frac{a^2\cdot\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}+a-a^2-\sqrt{a}\right)}{a^2-a}\)

\(=\frac{2a^2-2a}{a^2-a}\)

\(=2\)( 1 )

\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\left(\frac{\sqrt{a}}{1}-\frac{1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\right)\)

\(=\frac{a-1}{\sqrt{a}}\cdot\frac{2\left(a+1\right)}{a-1}\)

\(=\frac{2\left(a+1\right)}{\sqrt{a}}\) ( 2 )

Cộng ( 1 ) và ( 2 ) lại thì ta được biểu thức ban đầu:

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}\)

Câu b,c em chịu:((

P/S:e ko bt đúng hay sai đâu ạ

1 tháng 8 2019

Mk giải nốt phần còn lại nha

sai thì thông cảm

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}=7\Leftrightarrow2a+2=5\sqrt{a}\)

\(\Leftrightarrow2a-5\sqrt{a}+2=0\)

\(\Leftrightarrow\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{4}\\a=4\end{cases}}\)

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}>6\)\(\Rightarrow2a+2>4\sqrt{a}\Rightarrow2\left(a+1-2\sqrt{a}\right)>0\)

\(\Leftrightarrow\left(a+1-2\sqrt{a}\right)>0\Leftrightarrow\left(\sqrt{a}-1\right)^2>0\)

\(\Leftrightarrow a\ne1;a\ge0\)

23 tháng 4 2021

\(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{3+\sqrt{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

23 tháng 4 2021

a, \(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt[]{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

10 tháng 8 2017

\(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)