Tìm ba số nguyên tố liên tiếp a, b, c sao cho \(a^2+b^2+c^2\)cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Tham khảo nha bạn !
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Vì a,b,c có vai trò như nhau. Giả sử a<b<c
Khi đó ab+bc+ca =< 3bc
=> abc<3bc => a<3 => a=2 (vì a là số nguyên tố)
Với a=2, ta có:
2bc < 2b+2c-bc =< 4c
=> b<4 => b=2 hoặc b=3
Nếu b=2 thì 4c<2+4c thỏa mãn với c là số nguyên bất kì
Nếu b=3 thì 6c<6+5c => c<6 => c=3 hoặc c=5
Vậy các cặp số (a,b,c) cần tìm là: (2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố
Các bộ ba chữ số nguyên tố liên tiếp có thể là (2;3;5); (3;5;7)
Tính 22 + 32 + 52 = 4 + 9 + 25 = 38 là hợp số => Loại
Tính 32 + 52 + 72 = 9 + 25 + 49 = 83 là số nguyên tố
Vậy bộ ba số đó là 3;5; 7
Có : a<b<c
Nếu a=2 => b=3;c=5 => a^2+b^2+c^2 = 38 ko nguyên tố
Nếu a=3 => b=5 ; c=7 => a^2+b^2+c^2 = 83 là số nguyên tố
Nếu a>3 => b và c đều > 3 => a;b;c đều ko chia hết cho 3
=> a^2;b^2;c^2 đều ko chia hết cho 3
=> a^2;b^2;c^2 đều chia 3 dư 1
=> a^2+b^2+c^2 chia hết cho 3
Mà a^2+b^2+c^2 > 3
=> a^2+b^2+c^2 là hợp số
Vậy bộ 3 số nguyên tố nguyên liếp đó là : 3;5;7
k mk nha
ta biết rằng bình phương của một số nguyên hoặc chia hết cho 3 hoặc chia 3 dư 1
* Nếu a, b, c không có số nào là 3
=> a² chia 3 dư 1 ; b² chia 3 dư 1; c² chia 3 dư 1
=> a²+b²+c² chia hết cho 3 vô lí do gt nguyên tố và hẳn nhiên a²+b²+c² > 3
* Hơn nữa còn thấy không thể có số 2, vì nếu có 1 số là 2, 2 số còn lại là lẻ
=> a²+b²+c² chẳn => không nguyên tố
*Vậy phải có 1 số là 3, và không có số 2 => 3 số ng tố liên tiếp chỉ có thể là 3,5,7
Kiểm tra lại: 3²+5²+7² = 83 nguyên tố
Vậy 3 số cần tìm là: 3, 5, 7
Nếu a,b,c =2;3;5 =>a2+b2+c2=38 ( loại )
Nếu a;b;c =3;5;7 => a2+b2+c2 là số nguyên tố ( chọn )
Nếu a;b;c nguyên tố >3
=>a2+b2+c2đồng dư 3 ( mod 3)
=>a2+b2+c2 đồng dư 0 ( mod 3) nên là hợp số
Vậy (a;b;c)=(3;5;7)
a biết rằng bình phương của một số nguyên hoặc chia hết cho 3 hoặc chia 3 dư 1
* Nếu a, b, c không có số nào là 3
=> a² chia 3 dư 1 ; b² chia 3 dư 1; c² chia 3 dư 1
=> a²+b²+c² chia hết cho 3 vô lí do gt nguyên tố và hẳn nhiên a²+b²+c² > 3
* Hơn nữa còn thấy không thể có số 2, vì nếu có 1 số là 2, 2 số còn lại là lẻ
=> a²+b²+c² chẳn => không nguyên tố
*Vậy phải có 1 số là 3, và không có số 2 => 3 số ng tố liên tiếp chỉ có thể là 3,5,7
Kiểm tra lại: 3²+5²+7² = 83 nguyên tố
Vậy 3 số cần tìm là: 3, 5, 7
* Nếu a, b, c không có số nào là 3
=> a² chia 3 dư 1 ; b² chia 3 dư 1; c² chia 3 dư 1
=> a²+b²+c² chia hết cho 3 vô lí do gt nguyên tố và hẳn nhiên a²+b²+c² > 3
* Hơn nữa còn thấy không thể có số 2, vì nếu có 1 số là 2, 2 số còn lại là lẻ
=> a²+b²+c² chẳn => không nguyên tố
*Vậy phải có 1 số là 3, và không có số 2 => 3 số ng tố liên tiếp chỉ có thể là 3,5,7
Kiểm tra lại: 3²+5²+7² = 83 nguyên tố