Cho tg ABC vuông góc tại A
- Xác định tâm của tg ABC
- Vẽ đường cao AH và đường kính AD. Chứng minh
a) BAD=CAH
b)tg CAH đồng dạng tg DAB
c)BA.AC=AH.AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. Để chứng minh rằng $\triangle ABH \sim \triangle CAH$, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác này bằng nhau.
Ta có:
Vậy, theo định lí góc - cạnh - góc, ta có:
$$\frac{AB}{AH} = \frac{10}{AH} = \frac{AH}{AC} = \frac{AH}{16}$$
Từ đó suy ra:
$$\frac{AB}{AH} = \frac{AH}{AC} \Rightarrow \triangle ABH \sim \triangle CAH$$
B. Ta có:
$$k = \frac{AB}{AC} = \frac{10}{16} = \frac{5}{8}$$
$$k' = \frac{AC}{AB} = \frac{16}{10} = \frac{8}{5}$$
Vậy, ta đã suy ra được tỉ số đồng dạng giữa các cạnh của ba tam giác $\triangle ABH$, $\triangle CAH$ và $\triangle ABC$.
Do đó, ta có:
$$BC = AB \times k' = 10 \times \frac{8}{5} = 16$$
$$AH = AC \times k = 16 \times \frac{5}{8} = 10$$
C. Để tính diện tích của các tam giác này, ta sử dụng công thức:
$$S = \frac{1}{2} \times cạnh\ gần\ đáy \times độ\ cao$$
$$S_{ABH} = \frac{1}{2} \times AB \times AH = \frac{1}{2} \times 10 \times 10 = 50\ cm^2$$
$$S_{CAH} = \frac{1}{2} \times AC \times AH = \frac{1}{2} \times 16 \times 10 = 80\ cm^2$$
$$S_{ABC} = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 10 \times 16 = 80\ cm^2$$
a: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc ABH=góc CAH
=>ΔABH đồng dạng vói ΔCAH
=>k=AB/CA=5/8
b \(BC=\sqrt{10^2+16^2}=2\sqrt{89}\left(cm\right)\)
\(AH=\dfrac{10\cdot16}{2\sqrt{89}}=\dfrac{80}{\sqrt{89}}\left(cm\right)\)
c: \(S_{ABC}=\dfrac{1}{2}\cdot10\cdot16=80\left(cm^2\right)\)
\(HB=\dfrac{10^2}{2\sqrt{89}}=\dfrac{50}{\sqrt{89}}\left(cm\right)\)
=> S ABH=2000/89(cm2)
=>S ACH=5120/89cm2
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)
hay HC=18(cm)
Ta có: ΔABC∼ΔHAC(cmt)
nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)
Vậy: HC=18cm; AB=40cm; BC=50cm
a: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
=>\(\widehat{ACB}=90^0\)
b: Xét (O) có
ΔCBD nội tiếp
CD là đường kính
Do đó: ΔCBD vuông tại B
Xét (O) có
\(\widehat{CAB}\) là góc nội tiếp chắn cung CB
\(\widehat{CDB}\) là góc nội tiếp chắn cung CB
Do đó: \(\widehat{CAB}=\widehat{CDB}\)
Xét ΔACH vuông tại H và ΔDCB vuông tại B có
\(\widehat{HAC}=\widehat{BDC}\)
Do đó: ΔACH~ΔDCB
c: Sửa đề: cắt AC tại E
Xét ΔEBA vuông tại B có BC là đường cao
nên \(AC\cdot AE=AB^2=\left(2R\right)^2=4R^2\)