K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : AD Là đường p.giác trong tam giác ABC

=> \(\frac{AB}{BD}=\frac{AC}{DC}\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\)

Ta có : \(AB^2=BH.BC\)

           \(AC^2=CH.BC\)

\(\Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)

TA CÓ : \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\frac{BH}{CH}=\frac{3^2}{4^2}=\frac{9}{16}\)

\(\Rightarrow BH=\frac{9CH}{16}\)

MÀ BH + CH = BC

THẾ VÀO TA CÓ : \(\frac{9CH}{16}+CH=BC\)

\(\Rightarrow25CH=560\)( QUY ĐỒNG 2 VẾ )

\(CH=\frac{560}{25}=22.4\)

\(\Rightarrow BH=BC-22.4=35-22.4=12.6\)

vậy : BH = 12,6 ; BC = 35

:)

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

Theo tính chất tia phân giác:

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.BC$

$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$

Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)

Do đó:

$BH=35:(9+16).9=12,6$ (cm)

$CH=35:(9+16).16=22,4$ (cm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Hình vẽ:

12 tháng 11 2015

Bạn vẽ hình hộ nha

- ta có BC=BD+CD = 15+20 = 35; AB2 + AC2 =BC2 (ABC vuông tại A)

- Áp dụng t/c đường phân giác trong tam giác ABC có \(\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow\frac{AB}{15}=\frac{AC}{20}\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\)

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{35^2}{25}=49\)

\(\Rightarrow AB=3.7=21;AC=4.7=28\)

- Mặt khác:  AC2 = CH.BC  => CH = AC2 /BC = 282/35 = 22,4

Vậy CH = 22,4cm

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

18 tháng 11 2015

tự vẽ hình 

có BC=15+20=35

ta có \(\frac{bd}{dc}=\frac{ab}{ac}\)tính chất đường phân giác 

\(\Rightarrow\frac{ab}{ac}=\frac{3}{4}\Rightarrow\frac{ab}{3}=\frac{ac}{4}=k\)

ab=3k           ac=4k

ta có ab2+ac2=bc2

9k2+16k2=352

25k2=1225

k=7

=>ab=3k=21

ta có ab2=bh.bc

bh=441:35=12.6

tick cho minh nha

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)

c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)

17 tháng 11 2015

tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4

BC=15+20=35

AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25

=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)

tam giác vuông ABC có AH là đường cao 

BH=\(\frac{AB^2}{BC}=12.6\)

tick nhaaaaaaaaaaaaaaaaaaa

30 tháng 7 2016

cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD. 

a, Tính AD

b, Gọi H là hình chiếu của A trên BC. Tính AH, HB

c, Cm tam giác AID cân