K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu hỏi là gì hay chỉ cần vẽ hình hả bn?

16 tháng 7 2021

Dạ là

a)góc BCB+g ABC+ g ADC

b)g BCD=90°

c)góc DAC=2 góc ACD

d)góc BCD=60°

Câu nào sai ạ?

a: Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

DO đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE
\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

BH=CK

Do đó: ΔABH=ΔACK

14 tháng 4 2020

giups mk vs

21 tháng 3 2022

Ta có: A1 + A2 = 180(kề bù)

mà góc A1 = 90 độ(gt) ⇒ A2 = 180 độ - 90 độ = 90 độ

Xét tam giác BCA và tam giác DCA có:

BA = BD(gt)

A1 = A2(cmt)

AC chung

⇒ tam giác BCA = tam giác DCA( c - g - c)

⇒ góc BCA= góc DCA(2 góc tương ứng)

1:

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB<AC

nên BD<CD

b: AB<AC
=>góc B>góc C

góc ADB=góc C+góc CAD

góc ADC=góc B+góc BAD

mà góc C<góc B và góc CAD=góc BAD

nên góc ADB<góc ADC

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

20 tháng 2 2021

Chúc học tốt

16 tháng 4 2020

GIÚP MÌNH VỚI Ạ MÌNH ĐANG RẤT GẤP

Bài làm

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)( Hai góc kề bù )

\(\widehat{ACB}+\widehat{ACE}=180^0\)( Hai góc kề bù )

Mà \(\widehat{ABC}=\widehat{ACB}\)( Do tam giác ABC cân ở A )

=> \(\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ABD và tam giác ACE có:

AB = AC ( Do tam giác ABC cân ở A )

\(\widehat{ABD}=\widehat{ACE}\)( cmt )

BD = CE ( gt )

=> Tam giác ABD = tam giác ACE ( c.g.c )

=> AD = AE ( hai cạnh tương ứng )

b) Ta có:

BD + BM = DM

CE + CM = EM 

Mà DB = CE ( gt ), BM = CM ( Do M là trung điểm )

=> DM = EM

Xét tam giác AMD và tam giác AME có:

AD = AE ( cmt )

AM chung

DM = EM ( cmt )

=> Tam giác AMD = tam giác AME ( c.c.c )

=> \(\widehat{DAM}=\widehat{EAM}\)( Hai góc tương ứng )

b) Vì tam giác ABD = tam giác ACE ( cmt )

=> \(\widehat{ADB}=\widehat{ACE}\)( Hai góc tương ứng )

Xét tam giác BHD và tam giác CKE có:

\(\widehat{BHD}=\widehat{CKE}\left(=90^0\right)\)

Cạnh huyền: BD = CE ( gt )

Góc nhọn: \(\widehat{ADB}=\widehat{ACE}\)( cmt )

=> Tam giác BHD = tam giác CKE ( cạnh huyền - góc nhọn )

=> BH = CK ( hai cạnh tương ứng )

# Học tốt #