Cho tam giác ABC cân tại A.trên tia đối AB lấy điểm D thỏa AD=AB.mn giải giúp e với cần gấp lắm ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
DO đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBHD=ΔCKE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
BH=CK
Do đó: ΔABH=ΔACK
Ta có: A1 + A2 = 180(kề bù)
mà góc A1 = 90 độ(gt) ⇒ A2 = 180 độ - 90 độ = 90 độ
Xét tam giác BCA và tam giác DCA có:
BA = BD(gt)
A1 = A2(cmt)
AC chung
⇒ tam giác BCA = tam giác DCA( c - g - c)
⇒ góc BCA= góc DCA(2 góc tương ứng)
1:
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
b: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE(gt)
\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)
Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)
c) Ta có: ΔHBD=ΔKCE(cmt)
nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)
mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)
và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)
nên \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định nghĩa tam giác cân)
Bài làm
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)( Hai góc kề bù )
\(\widehat{ACB}+\widehat{ACE}=180^0\)( Hai góc kề bù )
Mà \(\widehat{ABC}=\widehat{ACB}\)( Do tam giác ABC cân ở A )
=> \(\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
AB = AC ( Do tam giác ABC cân ở A )
\(\widehat{ABD}=\widehat{ACE}\)( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( hai cạnh tương ứng )
b) Ta có:
BD + BM = DM
CE + CM = EM
Mà DB = CE ( gt ), BM = CM ( Do M là trung điểm )
=> DM = EM
Xét tam giác AMD và tam giác AME có:
AD = AE ( cmt )
AM chung
DM = EM ( cmt )
=> Tam giác AMD = tam giác AME ( c.c.c )
=> \(\widehat{DAM}=\widehat{EAM}\)( Hai góc tương ứng )
b) Vì tam giác ABD = tam giác ACE ( cmt )
=> \(\widehat{ADB}=\widehat{ACE}\)( Hai góc tương ứng )
Xét tam giác BHD và tam giác CKE có:
\(\widehat{BHD}=\widehat{CKE}\left(=90^0\right)\)
Cạnh huyền: BD = CE ( gt )
Góc nhọn: \(\widehat{ADB}=\widehat{ACE}\)( cmt )
=> Tam giác BHD = tam giác CKE ( cạnh huyền - góc nhọn )
=> BH = CK ( hai cạnh tương ứng )
# Học tốt #
Câu hỏi là gì hay chỉ cần vẽ hình hả bn?
Dạ là
a)góc BCB+g ABC+ g ADC
b)g BCD=90°
c)góc DAC=2 góc ACD
d)góc BCD=60°
Câu nào sai ạ?