\(A=\frac{1}{\sqrt{X}}+\frac{\sqrt{X}}{\sqrt{X}+1},B=\frac{\sqrt{X}}{X+\sqrt{X}}\)\(vàP=\frac{A}{B}\)
a) So sánh B với 1
b) Tìm x thỏa mãn \(P\sqrt{x}+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-\)\(2\sqrt{x-4}+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{1}{\sqrt{x}+1}\)
\(B-1=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}>=0\)
=>B>=1
b: \(P=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
\(P\cdot\sqrt{x}+2x-\sqrt{x}=3x-2\sqrt{x-4}+3\)
=>\(x+\sqrt{x}+1+2x-\sqrt{x}=3x+3-2\sqrt{x-4}\)
=>\(-2\sqrt{x-4}+3=1\)
=>x-4=1
=>x=5
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(A=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\) \(ĐKXĐ:x\ge0;x\ne1;x\ne4\)
\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right]:\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-4}{x-1}\right]\)
\(A=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left[\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
vậy \(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b)theo bài ra: \(A=\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right).\sqrt{x}=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-\left(\sqrt{3}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1-\sqrt{3}=0\\\sqrt{x}-1+\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(1-\sqrt{3}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\x=3-2\sqrt{3}+1\end{cases}}\)
vậy......