a/ Tìm x thuộc N để x+4 chia hết x+1
b/ Chứng tỏ (10n+53) chia hết cho 3 va 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
1)\(2x+7⋮x+1\)
\(\Rightarrow2\left(x+1\right)+5⋮x+1\)
\(\text{mà }2\left(x+1\right)⋮x+1\Rightarrow5⋮x+1\)
\(\Rightarrow x+1\in\text{Ư}\left\{5\right\}=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-6;-2;0;4\right\}\)
2)\(A=10^n+8\)
\(\Rightarrow A=999...9+1+8\text{(có n chữ số 9)}\)
\(\Rightarrow A=9\text{x}1111...1+9\text{(có n chữ số 1)}\)
\(\Rightarrow A=9\text{x}\left(111...11+1\right)\text{(có n chữ số 1)}\)
\(\Rightarrow A⋮9\)
1/ Bg
Ta có: 2x + 7 \(⋮\)x + 1 (x thuộc N)
=> 2x + 7 - 2.(x + 1) \(⋮\)x + 1
=> 2x + 7 - 2x - 2 \(⋮\)x + 1
=> (2x - 2x) + (7 - 2) \(⋮\)x + 1
=> 5 \(⋮\)x + 1
=> x + 1 thuộc Ư(5)
Ư(5) = {1; 5}
=> x + 1 = 1 hay 5
=> x = 1 - 1 hay 5 - 1
=> x = 0 hay x = 4
=> x = {0; 4}
Vậy x = {0; 4}
2/ Bg
Ta có: A = 10n + 8 (n thuộc N)
=> A = (9 + 1)n + (9 - 1)
=> A = 9n + 9.2 + 1 + 9 - 1
=> A = 9n + 9.2 + 9.1 + (1 - 1)
=> A = 9n + 9.3
=> A = 9.9n - 1 + 9.3
=> A = 9.(9n - 1 + 3) \(⋮\)9
=> A = 10n + 8 \(⋮\)9
=> ĐPCM
a, x+3 chia hết cho x-1
Ta có: x+3=(x+1)+2
=> 2 chia hết cho x+1
=>x+1 thuộc Ư(2)= {1, -1, 2, -2}
=> x thuộc {0,-2, 1, -3}
b.
b,3x chia hết cho x-1
c,2-x chia hết cho x+1
Ta có:
\(\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\)
Để (x + 3) \(⋮\left(x-1\right)\) thì 4 \(⋮\left(x-1\right)\)
\(\Rightarrow\) x - 1 = 1; x - 1 = -1; x - 1 = 2; x - 1 = -2; x - 1 = 4; x - 1 = -4
*) x - 1 = 1
x = 2
*) x - 1 = -1
x = 0
*) x - 1 = 2
x = 3
*) x - 1 = -2
x = -1
*) x - 1 = 4
x = 5
*) x - 1 = -4
x = -3
Vậy x = 5; x = 3; x = 2; x = 0; x = -1; x = -3
ZTổng các cs của số trên là 1+2+3+...+9+1+0
=45+1+0=46
Vì 46 chia 9 dư 1 nên số trên chia 9 dư 1
aa-a-a
a/
$x+4\vdots x+1$
$\Rightarrow (x+1)+3\vdots x+1$
$\Rightarrow 3\vdots x+1$
$\Rightarrow x+1\in \left\{1; 3\right\}$
$\Rightarrow x\in \left\{0; 2\right\}$
b/
$10\equiv 1\pmod 9$
$\Rightarrow 10^n\equiv 1^n\equiv 1\pmod 9$
$5^3=125\equiv 8\pmod 9$
$\Rightarrow 10^n+5^3\equiv 1+8\equiv 0\pmod 9$
$\Rightarrow 10^n+5^3\vdots 9$
Vì $10^n+5^3\vdots 9; 9\vdots 3\Rightarrow 10^n+5^3\vdots 3$.