chứng minh:
3^n+3 + 3^n+1 + 2^n+3 + 2^n+2 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ
3n+3+3n+1+2n+3+2n+2
=3n.33+3n.3+2n.23+2n.22
=3n.(33+3)+2n.(23+22)
=3n.(27+3)+2n.(8+4)
=3n.30+2n.12
vì 3n.30 chia hết cho 6
2n.12 chia hết cho 6
=> 3n+3+3n+1+2n+3+2n+2 chia hết cho 6
Cho xin phép sửa đề lại :
CMR : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}⋮6\)
Ta có : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}=3^n\cdot3^3+2^n\cdot2+3^n\cdot3+2^n\cdot2^2\)
\(=3^n\cdot27+2^n\cdot2+3^n\cdot3+2^n\cdot4\)
\(=3^n\left(27+3\right)+2^n\left(2+4\right)\)
\(=3^n\cdot30+2^n\cdot6=6\left(5\cdot3^n+2^n\right)⋮6\)(đpcm)
Còn nếu có hai phần 2n+2 thì nó chia hết cho 2 chứ không phải chia hết cho 6
Ta có :
3n + 2 + 3n + 1 + 2n + 3 + 2n + 2
= 3n . 32 + 3n . 3 + 2n . 23 + 2n . 22
= 3n (32 + 3) + 2n (23 + 22)
= 3n . 12 + 2n . 12
= 12 (3n . 2n)
Mà 12 ⋮ 6 ⇒ đpcm
=3n.(33+3)+2n.(23+22)
=3n.30+2n.12
=6.(3n.5+2n.2) chia het cho 6 voi moi n
=>dpcm