K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 7 2021

\(D=\frac{x^2-2x+1}{x+1}=\frac{x^2+x-3x-3+4}{x+1}=\frac{\left(x-3\right)\left(x+1\right)+4}{x+1}=x-3+\frac{4}{x+1}\inℤ\)

\(\Rightarrow\frac{4}{x+1}\inℤ\)mà \(x\inℤ\)nên \(\left(x+1\right)\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow x\in\left\{-5,-3,-2,0,1,3\right\}\).

14 tháng 7 2021

thank nha

16 tháng 8 2020

a. \(C=\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}=2-\frac{5}{x+2}\)

Vì C thuộc Z nên 5 / x + 2 thuộc Z

=> x + 2 thuộc { - 5 ; - 1 ; 1 ; 5 }

=> x thuộc { - 7 ; - 3 ; - 1 ; 3 } ( tm x thuộc Z )

c. \(D=\frac{x^2-2x+1}{x+1}=\frac{x\left(x+1\right)-3x+1}{x+1}=x-\frac{3x+3-2}{x+1}=x-3-\frac{2}{x+1}\)

Vì D thuộc Z nên 2 / x + 1 thuộc Z và x thuộc Z

=> x + 1 thuộc { - 2 ; - 1 ; 1 ; 2 }

=> x thuộc { - 3 ; - 2 ; 0 ; 1 } ( tm x thuộc Z )

c. Để C và D cũng nguyên bới một giá trị x thì x = - 3

16 tháng 8 2020

giúp mik đi huhu

29 tháng 6 2018

D=\(\frac{x^2+x-3x-3+4}{x+1}\)=\(\frac{\left(x+1\right)\left(x-3\right)+4}{x+1}\)=\(\left(x-3\right)+\frac{4}{x+1}\)là số nguyên (x#-1)

=> \(4⋮\left(x+1\right)\)=>\(x\in\left\{-5;-3;-2;0;1;3;\right\}\)

29 tháng 6 2018

Cảm ơn bạn nhiều nha!

28 tháng 6 2018

thiếu à bạn

28 tháng 6 2018

Thiếu gì vậy bạn?

29 tháng 6 2018

Để biểu thức D nhận giá trị nguyên thì \(\frac{x^2-2x+1}{x+1}\in Z\Leftrightarrow x^2-2x+1⋮x+1\)

Ta thấy: \(\left(x+1\right).\left(x+1\right)⋮x+1\Rightarrow x^2+2x+1⋮x+1\)

Suy ra \(x^2-2x+1-\left(x^2+2x+1\right)⋮x+1\)

\(\Rightarrow-4x⋮x+1\). Ta có: \(4\left(x+1\right)⋮x+1\Rightarrow4x+4⋮x+1\)

\(\Rightarrow\) \(4x+4+\left(-4x\right)⋮x+1\Rightarrow4⋮x+1\). Mà \(x+1\in Z\)

Nên \(x+1\)là ước nguyên của 4 \(\Rightarrow x+1\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{0;1;3;-2;-3;-5\right\}.\)

Kết luận: ...

9 tháng 7 2018

Cảm ơn  bạn nha!!

28 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(D=\left(\frac{x}{x+2}+\frac{8x+8}{x^2+2x}-\frac{x+2}{x}\right):\left(\frac{x^2-x+3}{x^2+2x}+\frac{1}{x}\right)\)

\(\Leftrightarrow D=\left(\frac{x}{x+2}+\frac{8x+8}{x\left(x+2\right)}-\frac{x+2}{x}\right):\frac{x^2-x+3+x+2}{x\left(x+2\right)}\)

\(\Leftrightarrow D=\frac{x^2+8x+8-\left(x+2\right)^2}{x\left(x+2\right)}:\frac{x^2+5}{x\left(x+2\right)}\)

\(\Leftrightarrow D=\frac{\left(x^2+8x+8-x^2-4x-4\right)x\left(x+2\right)}{x\left(x+2\right)\left(x^2+5\right)}\)

\(\Leftrightarrow D=\frac{4x+4}{x^2+5}\)

Để \(D\inℤ\)

\(\Leftrightarrow4x+4⋮x^2+5\)

\(\Leftrightarrow4x^2+4x⋮x^2+5\)

\(\Leftrightarrow4\left(x^2+5\right)-16x⋮x^2+5\)

\(\Leftrightarrow16x⋮x^2+5\)

\(\Leftrightarrow256\left(x^2+5\right)-1280⋮x^2+5\)

\(\Leftrightarrow1280⋮x^2+5\)

\(\Leftrightarrow x^2+5\inƯ\left(1280\right)\)

Đoạn này bạn làm nốt nhé

28 tháng 2 2020

bài mik sai từ đoạn \(4x^2+4x⋮x^2+5\)

k tương đương đc với \(4\left(x^2+5\right)-16x⋮x^2+5\)nhaaa !! 

MIk rút gọn đc D thôi :)) Phần còn lại chắc cậu tự làm nha

14 tháng 7 2017

ĐK \(\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

a, \(P=\frac{x^2+26x-19}{\left(x+3\right)\left(x-1\right)}-\frac{2x}{x-1}+\frac{x-3}{x+3}\)\(=\frac{x^2+26x-19-2x\left(x+3\right)+\left(x-3\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}\)

\(=\frac{x^2+26x-19-2x^2-6x+x^2-4x+3}{\left(x+3\right)\left(x-1\right)}\)\(=\frac{16\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=\frac{16}{x+3}\)

b. Với \(x=3\Rightarrow P=\frac{16}{3+3}=\frac{8}{3}\)

Với \(x=-1\Rightarrow P=\frac{16}{-1+3}=8\)

c. \(P=4\Rightarrow\frac{16}{x+3}=4\Rightarrow x+3=4\Rightarrow x=1\)

d. \(P\in Z\Rightarrow x+3\inƯ\left(16\right)\)

\(\Rightarrow x+3\in\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\)

\(\Rightarrow x\in\left\{-19;-11;-7;-5;-4;-2;-1;1;5;13\right\}\)

14 tháng 7 2017

\(P=\frac{x^2+26x-19}{\left(x-1\right)\left(x+3\right)}-\frac{2x}{x-1}+\frac{x-3}{x+3}=\)

\(P=\frac{x^2+26x-19-2x\left(x+3\right)+\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\)

\(P=\frac{x^2+26x-19-2x^2-6x+x^2-4x+4}{\left(x-1\right)\left(x+3\right)}=\)

\(P=\frac{16x-15}{\left(x-1\right)\left(x+3\right)}\)