Cho tam giác vuông ABC vuông tại A, cạnh AB=5cm,AC=12cm.Từ trung điểm M của cạnhBCkẻ dường thẳng vuông góc vớiBC cắt cạnh góc vuông tại N .tính độ dài MN
Gọi AH là đường cao thuộc cạnh huyền (HϵBC).Tính AH,BH,CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI LÀM:
a) Vì tam giác ABC vuông tại A
Theo định lý Py-ta-go, ta có
BC2 = AB2 + AC2
=> BC2 = 52 + 122
=> BC2 = 25 + 144
=> BC2 = 169
=> BC = 13
Vì M là trung điểm của BC
=> BM = CM = BC / 2 = 13/2 = 6,5
Xét tam giác ABC và tam giác MNC có
Góc BAC = góc NMC = 90o (tam giác ABC vuông tại A, MN vuông góc với BC)
Góc C là góc chung
=> Tam giác ABC đồng dạng với tam giác MNC (g.g)
\(=>\frac{AB}{MN}=\frac{AC}{MC}\)
\(=>\frac{5}{MN}=\frac{12}{6,5}\)
\(=>MN=\frac{6,5.5}{12}=\frac{65}{24}\)
b) Vì tam giác ABC vuông tại A có AH vuông góc với BC
AB2 = BH.BC
\(=>BH=\frac{AB^2}{BC}\)
\(=>BH=\frac{5^2}{13}\)
\(=>BH=\frac{25}{13}\)
Vì BH + HC = BC
=> HC = BC - BH
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
Vì tam giác ABC vuông tại A có AH vuông góc với BC
=> AH2 = BH.HC
=> \(AH^2=\frac{25}{13}.\frac{144}{13}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}\)
=> \(AH=\frac{60}{13}\)
Cậu chưa cho câu hỏi câu b) nhưng có phải là: "Gọi AH là đường cao thuộc BC. Tính HB, AH và HC", đại loại vậy đúng hăm?
Bài này có thể chia 2 trường hợp nhưng tớ mới làm trường hợp MN cắt AC còn MN cắt AB thì để tớ trả lời sau nhen~
Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}\)
hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)
=> \(BC=\sqrt{169}=13\left(cm\right)\)
=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Xét tam giác ABC và tam giác MNC có:
\(\widehat{BAC}=\widehat{NMC}=90^0\)
\(\widehat{C}\)chung
=> Tam giác ABC ~ tam giác MNC ( g-g )
=> \(\frac{AB}{MN}=\frac{AC}{MC}\)
hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)
b) Xét tam giác ABC vuông tại A
Đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)
=> \(\frac{1}{AH^2}=\frac{169}{3600}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )
Xét tam giác AHB vuông tại H có:
Theo Pytago có:
\(BH^2=AB^2-AH^2\)
hay \(BH^2=5^2-\frac{3600}{169}\)
=> \(BH^2=25-\frac{3600}{169}\)
=>\(BH^2=\frac{625}{169}\)
=> \(BH=\frac{25}{13}\)( cm )
Ta có: BH + HC = BC
hay \(\frac{25}{13}+HC=13\)
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
Bài 4:
Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM) (2 góc trong cùng phía)
Mà là góc ngoài của nên
AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
(2 góc so le trong)
Xét và có:
AH = DE (vì AD +DH = DH + HE)
(ch/minh trên)
(cạnh góc vuông - góc nhọn) DF = BH (2 cạnh tương ứng)
Xét và có:
HE = AD (gt)
BH = DF (ch/minh trên)
(2 cạnh góc vuông) (2 góc tương ứng)
BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác: BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13(cm)
Xét ΔMBN vuông tại M và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔMBN\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{MN}{AC}=\dfrac{BM}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MN=\dfrac{BM\cdot AC}{AB}=\dfrac{6.5\cdot12}{6}=6.5\cdot2=13\left(cm\right)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot CB=AB\cdot AC\)
\(\Leftrightarrow AH\cdot13=5\cdot12=60\)
hay \(AH=\dfrac{60}{13}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=5^2-\left(\dfrac{60}{13}\right)^2=\dfrac{625}{169}\)
hay \(BH=\dfrac{25}{13}\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên \(CH=BC-BH=13-\dfrac{25}{13}=\dfrac{144}{13}\left(cm\right)\)