K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13(cm)

Xét ΔMBN vuông tại M và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔMBN\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{MN}{AC}=\dfrac{BM}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MN=\dfrac{BM\cdot AC}{AB}=\dfrac{6.5\cdot12}{6}=6.5\cdot2=13\left(cm\right)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot CB=AB\cdot AC\)

\(\Leftrightarrow AH\cdot13=5\cdot12=60\)

hay \(AH=\dfrac{60}{13}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=5^2-\left(\dfrac{60}{13}\right)^2=\dfrac{625}{169}\)

hay \(BH=\dfrac{25}{13}\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên \(CH=BC-BH=13-\dfrac{25}{13}=\dfrac{144}{13}\left(cm\right)\)

20 tháng 8 2017

A B C N M H

BÀI LÀM:

a) Vì tam giác ABC vuông tại A

Theo định lý Py-ta-go, ta có

BC2 = AB2 + AC

=> BC2 = 52 + 122

=> BC2 = 25 + 144

=> BC2 = 169

=> BC = 13

Vì M là trung điểm của BC

=> BM = CM = BC / 2 = 13/2 = 6,5

Xét tam giác ABC và tam giác MNC có

Góc BAC = góc NMC = 90o (tam giác ABC vuông tại A, MN vuông góc với BC)

Góc C là góc chung

=> Tam giác ABC đồng dạng với tam giác MNC (g.g)

\(=>\frac{AB}{MN}=\frac{AC}{MC}\) 

\(=>\frac{5}{MN}=\frac{12}{6,5}\)

\(=>MN=\frac{6,5.5}{12}=\frac{65}{24}\)

b) Vì tam giác ABC vuông tại A có AH vuông góc với BC

AB2 = BH.BC

\(=>BH=\frac{AB^2}{BC}\)

\(=>BH=\frac{5^2}{13}\)

\(=>BH=\frac{25}{13}\)

Vì BH + HC = BC

=>         HC = BC - BH

=>         \(HC=13-\frac{25}{13}\)

=>         \(HC=\frac{144}{13}\)

Vì tam giác ABC vuông tại A có AH vuông góc với BC

=> AH2 = BH.HC

=> \(AH^2=\frac{25}{13}.\frac{144}{13}\)

=> \(AH^2=\frac{3600}{169}\)

=> \(AH=\sqrt{\frac{3600}{169}}\)

=> \(AH=\frac{60}{13}\)

Cậu chưa cho câu hỏi câu b) nhưng có phải là: "Gọi AH là đường cao thuộc BC. Tính HB, AH và HC", đại loại vậy đúng hăm?

Bài này có thể chia 2 trường hợp nhưng tớ mới làm trường hợp MN cắt AC còn MN cắt AB thì để tớ trả lời sau nhen~

26 tháng 7 2020

A B C K N 5 12

Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.

Bài làm

a) Xét tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}\)

hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)

=> \(BC=\sqrt{169}=13\left(cm\right)\)

=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)

Xét tam giác ABC và tam giác MNC có:

\(\widehat{BAC}=\widehat{NMC}=90^0\)

\(\widehat{C}\)chung

=> Tam giác ABC ~ tam giác MNC ( g-g )

=> \(\frac{AB}{MN}=\frac{AC}{MC}\)

hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)

b) Xét tam giác ABC vuông tại A

Đường cao AH

=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)

=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)

=> \(\frac{1}{AH^2}=\frac{169}{3600}\)

=> \(AH^2=\frac{3600}{169}\)

=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )

Xét tam giác AHB vuông tại H có:

Theo Pytago có:

\(BH^2=AB^2-AH^2\)

hay \(BH^2=5^2-\frac{3600}{169}\)

=> \(BH^2=25-\frac{3600}{169}\)

=>\(BH^2=\frac{625}{169}\)

=> \(BH=\frac{25}{13}\)( cm )

Ta có: BH + HC = BC

hay \(\frac{25}{13}+HC=13\)

=> \(HC=13-\frac{25}{13}\)

=> \(HC=\frac{144}{13}\)

22 tháng 11 2016

Bài 4:

Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM)   (2 góc trong cùng phía)
Mà  là góc ngoài của  nên 
 
 
 AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
  (2 góc so le trong)

Xét  và  có:
 
AH = DE (vì AD +DH = DH + HE)
 (ch/minh trên)
  (cạnh góc vuông - góc nhọn)  DF = BH (2 cạnh tương ứng)
Xét  và  có:

HE = AD (gt)
BH = DF (ch/minh trên)

  (2 cạnh góc vuông)   (2 góc tương ứng)
 BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác:   BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)

14 tháng 3 2020

ccccccccccccccccccccccccccccccccccccccc

21 tháng 2 2017

Vẽ cái hình giùm đi bạn :))

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm ,...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0