K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\dfrac{1}{\sqrt{x-1}}=\dfrac{\sqrt{x-1}}{x-1}\)

 \(\dfrac{a+2}{\sqrt{a^2-4}}=\dfrac{\sqrt{a+2}}{\sqrt{a-2}}=\dfrac{\sqrt{a^2-4}}{a-2}\)

\(\dfrac{x-y}{\sqrt{x^2-y^2}}=\dfrac{x-y}{\sqrt{\left(x-y\right)\left(x+y\right)}}=\dfrac{\sqrt{x-y}}{\sqrt{x+y}}=\dfrac{\sqrt{x^2-y^2}}{x+y}\)

\(\dfrac{a}{\sqrt{x^2}}=\dfrac{a}{\left|x\right|}\)

b) \(\dfrac{\sqrt{x^2-1}+1}{\sqrt{x^2-1}-1}=\dfrac{\left(\sqrt{x^2-1}+1\right)^2}{x^2-2}\)

c) \(\dfrac{2}{\sqrt{7-2\sqrt{6}}}=\dfrac{2}{\sqrt{6}-1}=\dfrac{2\left(\sqrt{6}+1\right)}{5}\)

5 tháng 7 2021

Bài 1 :

a, ĐKXĐ : \(\dfrac{2x+1}{x^2+1}\ge0\)

\(x^2+1\ge1>0\)

\(\Rightarrow2x+1\ge0\)

\(\Rightarrow x\ge-\dfrac{1}{2}\)

Vậy ...

b, Ta có : \(\sqrt[3]{-27}+\sqrt[3]{64}-\sqrt[3]{-\dfrac{128}{2}}\)

\(=-3+4-\left(-4\right)=-3+4+4=5\)

5 tháng 7 2021

Bài 2 :

\(a,=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)

\(=\sqrt{5}\left(2+6+5-12\right)=\sqrt{2}\)

\(b,=\sqrt{5}+\sqrt{5}+\left|\sqrt{5}-2\right|\)

\(=2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}-2\)

\(c,=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

\(=\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\)

\(=3\)

18 tháng 3 2021

\(=\left(\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}+1\right)=1\)

Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x-1}\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}-1}{x-1}\)

\(=\dfrac{x+\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{x+1}{\sqrt{x}-1}\)

\(B=\dfrac{\left(1+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}=-2-3\sqrt{5}-5=-7-3\sqrt{5}\)

\(C=\dfrac{5\sqrt{x}-x}{2x}\)

\(D=\dfrac{\left(\sqrt{a}+1\right)\left(2\sqrt{a}+1\right)}{4a-1}\)

\(E=\dfrac{15}{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{\sqrt{15}}{\sqrt{5}-\sqrt{3}}=\dfrac{\sqrt{75}+\sqrt{45}}{2}\)

5 tháng 7 2021

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{3}{\sqrt{x}\left(\sqrt{x}-1\right)^2\left(\sqrt{x}-2\right)}\)

13 tháng 5 2021

`A=((x\sqrtx-1)/( x-\sqrtx)-(x\sqrtx+1)/(x+\sqrtx)(\sqrtx/(\sqrtx-1)-1/(\sqrtx+1))(x>0,x ne 1)`
`=(((\sqrtx-1)(x+\sqrtx+1))/( x-\sqrtx)-((\sqrtx+1)(x-\sqrtx+1))/(x+\sqrtx)((x+\sqrtx-\sqrtx+1)/(x-1))`
`=((x+\sqrtx+1+x-\sqrtx+1)/\sqrtx) .((x+1) /( x-1)) `
`=((2x+2)/\sqrtx).((x+1) /(x-1 ) )`
`=( 2(x+1)^2) /(\sqrtx(x-1))`

13 tháng 5 2021

`A=((x\sqrtx-1)/( x-\sqrtx)-(x\sqrtx+1)/(x+\sqrtx)(\sqrtx/(\sqrtx-1)-1/(\sqrtx+1))(x>0,x ne 1)`
`=(((\sqrtx-1)(x+\sqrtx+1))/( x-\sqrtx)-((\sqrtx+1)(x-\sqrtx+1))/(x+\sqrtx))((x+\sqrtx-\sqrtx+1)/(x-1))`
`=((x+\sqrtx+1+x-\sqrtx+1)/\sqrtx) .((x+1) /( x-1)) `
`=((2x+2)/\sqrtx).((x+1) /(x-1 ) )`
`=( 2(x+1)^2) /(\sqrtx(x-1))`

\(A=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+2\sqrt{x}+3-2x+3\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3x+7\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

3 tháng 8 2023

\(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) (ĐK: \(x\ne4;x\ne9;x\ge0\))

\(A=\dfrac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(A=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\sqrt{x}-9-\left(x-3\sqrt{x}+\sqrt{x}-3\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\sqrt{x}-9-x+2\sqrt{x}+3-2x+3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{-3x+7\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

4 tháng 7 2021

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)

a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)

c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)

\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)

 

 

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

ĐK: $x\geq 0; x\neq 1$

\(A=\left[\frac{(\sqrt{x}-1)(x+2\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}+2)}\right].\frac{\sqrt{x}-1}{(\sqrt{x}-1)(2\sqrt{x}+3)}\)

\(=\left(\frac{x+2\sqrt{x}+2}{\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{1}{2\sqrt{x}+3}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1}{2\sqrt{x}+3}=\frac{(\sqrt{x}+1)^2}{(\sqrt{x}+1)(2\sqrt{x}+3)}=\frac{\sqrt{x}+1}{2\sqrt{x}+3}\)