So sánh: A và B biết \(A=\frac{17^{2001}+1}{17^{2002}+1}\) ; \(B=\frac{17^{2000}+1}{17^{2000}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(17A=17.\left(\frac{17^{2001}+1}{17^{2002}+1}\right)=\frac{17^{2002}+17}{17^{2002}+1}=\frac{17^{2002}+1+16}{17^{2002}+1}=1+\frac{16}{17^{2002}+1}\)
\(17B=17.\left(\frac{17^{2000}+1}{17^{2001}+1}\right)=\frac{17^{2001}+17}{17^{2001}+1}=\frac{17^{2001}+1+16}{17^{2001}+1}=1+\frac{16}{17^{2001}+1}\)
Vì 1 = 1 và 16 = 16 nên so sánh mẫu:
172002 + 1 > 172001 + 1
=> \(1+\frac{16}{17^{2002}+1}<1+\frac{16}{17^{2001}+1}\)
=> 17A < 17B
=> A < B.
Ta có:\(17^{2001}>17^{2000},1=1\) Còn \(\frac{1}{17^{2002}},\frac{1}{17^{2001}}\) thì ko quan trọng chúng đều nhỏ hơn 1
Nên A>B
a,Ta có: \(\frac{2000}{2002}< 1< \frac{2002}{2001}\)suy ra \(\frac{-2000}{2002}>\frac{-2002}{2001}\)
b,Ta có: \(\frac{5}{17}>\frac{5}{20}=\frac{1}{4}=\frac{4}{16}\)
Đáp số:\(\frac{-2000}{2002}>\frac{-2002}{2001}\)và \(\frac{5}{17}>\frac{4}{16}\)
Nữ hoàng tháng 5
a.\(\frac{13}{17}\)=1-\(\frac{4}{17}\); \(\frac{46}{50}\)=1-\(\frac{4}{50}\)
Vì \(\frac{4}{17}\)>\(\frac{4}{50}\)=> 1-\(\frac{4}{17}\)<1-\(\frac{4}{50}\)
Vậy\(\frac{13}{17}\)<\(\frac{46}{50}\)
a)\(9^{12}=\left(3^2\right)^{12}=3^{24}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
\(\Rightarrow9^{12}>27^7\)
a) bạn Mạnh làm rồi và đúng
b) Ta có : \(333^{444}=\left(333^4\right)^{111}=\left[\left(3.111\right)^4\right]^{111}=\left[\left(3^4.111^4\right)\right]^{111}=\left(84.111^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}=\left[\left(4.111\right)^3\right]^{111}=\left[\left(4^3.111^3\right)\right]^{111}=\left(64.111^3\right)^{111}\)
Ta thấy (84.1114)111 > ( 64.1113)111 => 333444 > 444333
Vậy...
c) Vì \(17^{2002}+1>17^{2001}+1\)
\(\Rightarrow\frac{17^{2001}+1}{17^{2002}+1}< \frac{17^{2001}+1}{17^{2001}+1}\)
Ta có: B = \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000}{4003}+\frac{2001}{4003}\)
Ta thấy : \(\frac{2000}{2001}>\frac{2000}{4003}\)(1)
\(\frac{2001}{2002}>\frac{2001}{4003}\) (2)
Từ (1) và (2) cộng vế với vế, ta được :
\(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{4003}+\frac{2001}{4003}\)
hay \(A=\frac{2000}{2001}+\frac{2001}{2002}>B=\frac{2000+2001}{2001+2002}\)
Ta có:
\(A=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{3999.4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3999}-\frac{1}{4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{3}+...+\frac{1}{3999}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}=1\)
Ta lại có:
\(B=\frac{\left(17+1\right)\left(\frac{17}{2}+1\right)...\left(\frac{17}{19}+1\right)}{\left(1+\frac{19}{17}\right)\left(1+\frac{19}{16}\right)...\left(1+19\right)}\)
\(=\frac{\frac{18}{1}.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{\frac{36}{17}.\frac{35}{16}.\frac{34}{15}...\frac{20}{1}}\)
\(=\frac{1.2.3...36}{1.2.3...36}=1\)
Từ đây ta suy ra được
\(A-B=1-1=0\)
ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)
\(\Rightarrow A
ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)
=>A>B
A = \(\frac{2000+2001}{2001+2002}\)= \(\frac{4001}{4003}\)
B = \(\frac{2000+2001}{2001+2003}=\frac{4001}{4003}\)
vậy A = B
a) \(\frac{3}{-4}=\frac{-3}{4};\frac{-1}{-4}=\frac{1}{4}\)
Vì - 3 < 1 nên \(\frac{-3}{4}< \frac{1}{4}\)
hay \(\frac{3}{-4}< \frac{-1}{-4}\)
Quy đồng mẫu ta được:
15/17=15.27/17.27=405/459
25/27=25.17/27.27=425/459
⇒405/459<425/459⇒15/17<25/27
\(A=\frac{17^{2001}+1}{17^{2002}+1}<1\) vì tử nhỏ hơn mẫu
\(B=\frac{17^{2000}+1}{17^{2000}+1}=1\) vì tử bằng mẫu
=> A<B
So sánh A và B biết A = \(\frac{17^{2001}+1}{17^{2002}+1}\); B = \(\frac{17^{2000}+1}{17^{2001}+1}\)