Các bạn ơi chỉ mình : Ví dụ như trong căn phải là số không âm ví dụ như căn (x-1) thì lúc nào x cũng luôn lớn hơn hoặc bằng 0 rồi nhưng sao phải lấy cả x-1 >=0 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề ví dụTimf x không âm biết căn (x-1)=...... Đề bải x không âm thì chỉ cần x>=0 thôi chứ ạ. Chỉ rõ chio mình hiểu nhá
Vì khi lấy ĐKXĐ thì lấy cả biểu thức trong căn mới đúng
Phân tích rõ một chút nhé :
- Căn bậc 2 của số x (bắt buộc là số x phải >=0 ) là \(\sqrt{x},-\sqrt{x}\)
Thì căn bậc 2 số học của x là \(\sqrt{x}\)(do\(\sqrt{x}\ge0\))
- Đối với trường hợp căn bậc 2 số học của x2 thì là |x|
Ý bạn là sao nhỉ?
Theo mình hiểu thì bạn muốn biến 72 thành căn đúng không? Vậy thì bạn chỉ cần biểu diễn $72=\sqrt{72^2}=\sqrt{5184}$ thôi.
Cách hỏi của bạn thực sự hơi khó hiểu. Mình chỉ trả lời theo cách hiểu của mình về câu hỏi của bạn thôi nhé.
- Thứ nhất, không cần phải tìm điều kiện của số trong giá trị tuyệt đối. Thông thường khi đến đoạn $\sqrt{a^2}=|a|$ thì đề bài đã có sẵn điều kiện $a\geq 0$ hoặc $a< 0$ để bạn tiếp tục thực hiện đến đoạn phá trị tuyệt đối. Ví dụ, cho $a< 0$ thì $\sqrt{a^2}=|a|=-a$
- Thứ hai, trong trường hợp $\sqrt{5a}.\sqrt{45a}-3a$, điều kiện để biểu thức này có nghĩa là $5a\geq 0$ và $45a\geq 0$, hay $a\geq 0$.
Khi đó, để phá căn và xuất hiện trị tuyệt đối, bạn thực hiện $\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\sqrt{(15a)^2}-3a=|15a|-3a=15a-3a=12a$
\(\sqrt{f\left(x\right)}=\sqrt{g\left(x\right)}\left(ĐK:\left[{}\begin{matrix}f\left(x\right)\ge0\\g\left(x\right)\ge0\end{matrix}\right.\right)\\ \Leftrightarrow f\left(x\right)=g\left(x\right)\)
Trong ví dụ \(\sqrt{16x}=\sqrt{81}\), trước khi bình phương 2 vế để phá dấu căn thì bạn cần ghi điều kiện \(16x\ge0\Leftrightarrow x\ge0\) nhé.
Bạn chỉ cần phân tích nó ra thành thừa số nguyên tố là xong
Nếu em thay $x=9,10,...$ không ra kết quả thì có nghĩa bài toán không có nghiệm $x=9,10,...$ thôi.
Em xét 3 TH:
$x\geq 7$
$3\leq x< 7$
$x< 3$
Để phá trị tuyệt đối
Còn không có chuyện phải thay $x\leq 7$
Thì ĐKXĐ là phải lấy tất cả các biểu thức trong căn phải không âm
Bạn nhớ rằng $\sqrt{a}$ xác định khi mà $a\geq 0$, hay $a$ không âm.
Cho $a=x-1$ thì để $\sqrt{x-1}$ xác định thì $x-1\geq 0$
$\Leftrightarrow x\geq 1$