K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 


= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 


Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 


Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 


=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

12 tháng 7 2021

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 

= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 

Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ

số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 

=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A

chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

6 tháng 3 2017

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Chứng  minh   J = 10 n + 18 n − 1  chia hết cho 9.

Bước 2. Chứng minh  J = 10 n + 18 n − 1  chia hết cho 3.

Ta có:

J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n  

=> J chia hết cho 9.

+) Chứng minh  11...1 + 2 n ⋮ 3 .

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n .

Suy ra 11...1 và n có cùng số dư trong phép chia cho 3.

=> 11...1-n chia hết cho 3.

=> (11...1+2n) ⋮ 3

⇒ J ⋮ 27

1 tháng 11 2018

22 tháng 12 2023

b: \(B=16^5+2^{15}\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(45⋮9;99⋮9;180⋮9\)

Do đó: \(45+99+180⋮9\)

=>\(C⋮9\)

d: \(D=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(D=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)\)

=>D chia hết cho cả 3 và 5

 

1 tháng 5 2018

a,

n-n=n(n-1)=n(n2  +1)(n+1)(n-1)

vi n,n+1,n-1 la 3 so tu nhien lien tiep nen h cau chung chia het cho 3 va 2

mat khac (2;3)=1 nen S= n(n+1)(n-1)(n+1)chia het cho 6

xet n=5k  

ma(5;6)=1nen Schia het cho 30

tuong tu voi n=5k+1 thi n-1 chia het cho 5

voi n=5k+2 thi n+1 chia het cho 5

voi n=5k+3 thi n+1 chia het cho 5

voi n=5k+4 thi n+1 chia het cho 5

vay voi moi n nguyen thi n-n chia het cho 30

14 tháng 12 2021

\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)

Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)

14 tháng 12 2021

Câu c đâu chị

29 tháng 7 2017

cho A = 10n+18n-1 chia hết cho 27

suy ra 10n+18n-1 chia hết cho 27

suy ra n=1

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Tick nhé