K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để \(2^n-1⋮7\) thì \(2^n=7k+1\)

 

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:
Nếu $n=3k$ với $k\in\mathbb{Z}$ thì:

$2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$

Nếu $n=3k+1$ với $k\in\mathbb{Z}$ thì:

$2^n-1=2^{3k+1}-1=2.8^k-1\equiv 2.1^k-1\equiv 1\pmod 7$

Nếu $n=3k+2$ với $k\in\mathbb{Z}$ thì:

$2^n-1=2^{3k+2}-1=4.8^k-1\equiv 4.1^k-1\equiv 3\pmod 7$

Vậy với $n=3k$ với $k\in\mathbb{Z}$ thì $2^n-1\vdots 7$

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

15 tháng 12 2016

làm câu

17 tháng 8 2017

n+3 chia hết n+3=>n(n+3) chia hết n+3=>n^2+3n chia hết n+3

n^2+3n-n^2+7 chia hết n+3

3n+7 chia hết n+3

3n+7-[2(n+3 )] chia hết n+3

3n+7-2n-6 chia hết n+3

1 chia hết n+3

=>n+3 thuộc 1,-1

=> n thuộc -2,-4

k mk nha

18 tháng 8 2017

Ta có: \(n^2-7⋮n+3\)

\(\Leftrightarrow\left(n.n\right)-7⋮n+3\)

\(\Rightarrow3+n\times7=\left(n.n\right)\)

\(\Leftrightarrow\left(3+n\right).7=\left(n.n\right)\)

\(\Rightarrow n.n=\left(3+n\right).7\)

Vậy .............................

18 tháng 8 2017

:v đang định làm cái tự nhiên có đứa khác làm :3

29 tháng 7 2019

#)Giải :

1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)

\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn

29 tháng 7 2019

a) Ta có: n + 7 = (n + 3) + 4

Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

n + 3 1 -1 2 -2 4 -4
  n -2 -4 -1 -5 1 -7

Vậy ...

b) Ta có: 2n + 5 = 2(n + 3) - 1

Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(1) = {1; -1}

Với: n + 3 = 1 => n = 1 - 3 = -2

n + 3 = -1 => n= -1 - 3 = -4

Vậy ...

13 tháng 11 2017

bố không biết

5 tháng 12 2017

\(\frac{n^3-n^2+2n+7}{n^2+1}=\frac{\left(n^3+n\right)-\left(n^2+1\right)+n+8}{n^2+1}=\frac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}\)

\(n-1+\frac{n+8}{n^2+1}\)

Do \(n^3-n^2+2n+7⋮n^2+1\) \(\Rightarrow\frac{n^3-n^2+2n+7}{n^2+1}\in Z\)

\(\Rightarrow n-1+\frac{n+8}{n^2+1}\in Z\)

\(\Rightarrow n=-8\)