Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)( ĐKXĐ: \(1\le x\ne3\))
\(=\frac{\left(x-1\right)-2}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
b) \(x=4\left(2-\sqrt{3}\right)=2\left(4-2\sqrt{3}\right)=2\left(\sqrt{3}-1\right)^2\)thay vào P
c) \(P=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\)
Min P = \(\sqrt{2}\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\left(x\ne0;x\ne-1\right)\\ P=\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\\ b,P=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(tm\right)\\ c,x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=1\left(x\ne0\right)\\ \Leftrightarrow P=\dfrac{1+3}{1+1}=\dfrac{4}{2}=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{9}{4}\end{matrix}\right.\)
a) Ta có: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{2\cdot\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2x+2\sqrt{x}+\sqrt{x}+1}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b) Ta có: \(x=\dfrac{3-2\sqrt{2}}{4}\)
\(\Leftrightarrow x=\dfrac{2-2\cdot\sqrt{2}\cdot1+1}{4}\)
\(\Leftrightarrow x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào biểu thức \(P=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\), ta được:
\(P=\left(3\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}-5\right):\left(2\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}+1\right)\)
\(\Leftrightarrow P=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(\Leftrightarrow P=\left(\dfrac{3\cdot\left(\sqrt{2}-1\right)}{2}-\dfrac{10}{2}\right):\left(\sqrt{2}-1+1\right)\)
\(\Leftrightarrow P=\dfrac{3\sqrt{2}-3-10}{2}:\sqrt{2}\)
\(\Leftrightarrow P=\dfrac{3\sqrt{2}-13}{2}\cdot\sqrt{2}\)
\(\Leftrightarrow P=\dfrac{6-13\sqrt{2}}{2}\)
Vậy: Khi \(x=\dfrac{3-2\sqrt{2}}{4}\) thì \(P=\dfrac{6-13\sqrt{2}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A= \(\frac{3\left(x-3\right)+\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{18}{\left(9-x^2\right)}\)
A= \(\frac{3x-9+x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{x^2-9}\)
A=\(\frac{3x+x-9+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
A=\(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
A=\(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
A=\(\frac{4}{\left(x-3\right)}\)
để A=4
=> \(\frac{4}{x-3}=4\)
<=> x-3=1
<=> x=4
a, Rút gọn :
\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
\(A=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{1\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4}{x-3}\)
b, Để A = 4
\(\Leftrightarrow\frac{4}{x-3}=4\)
\(\Leftrightarrow4\left(x-3\right)=4\)
\(\Leftrightarrow4x-12=4\)
\(\Leftrightarrow4x=16\)
\(\Leftrightarrow x=4\)
Vậy để a = 4 thì x = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)
\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)
2.
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
3.
Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)
4.
\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)
\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)
5.
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Khi x=16 thì \(A=\dfrac{6}{16-3\cdot4}=\dfrac{6}{4}=\dfrac{3}{2}\)
b: P=A:B
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{6}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
c: \(P-1=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}}=\dfrac{3}{\sqrt{x}}>0\)
=>P>1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{4-x}\right):\dfrac{x+5\sqrt{x}+6}{x-4}\left(dk:x\ge0,x\ne4\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{4x}{x-4}\right).\dfrac{x-4}{x+2\sqrt{x}+3\sqrt{x}+6}\)
\(=\dfrac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2+4x}{x-4}.\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4+4x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{4x+8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)
\(b,x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{4}}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)
Khi \(x=4\Rightarrow P=\dfrac{4\sqrt{4}}{\sqrt{4}+3}=\dfrac{4.2}{2+3}=\dfrac{8}{5}\)
\(c,P=2\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+3}=2\Leftrightarrow\dfrac{4\sqrt{x}-2\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=0\Leftrightarrow2\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có: \(A=\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{x}{3\sqrt{x}-x}\right):\frac{\sqrt{x}+3}{x-9}\)
\(=\left(\frac{2x}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}:\frac{1}{\sqrt{x}-3}\)
\(=\frac{x\cdot\left(\sqrt{x}-3\right)}{\sqrt{x}\cdot\left(\sqrt{x}-3\right)}\)
\(=\sqrt{x}\)
ok k nha