chứng minh rằng n thuộc N thì các số sao chia hết cho 9
10n-1
10n+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
a) 10^n-1=100...0(n chữ số 0)-1=999...9(n chữ số 9) chia hết cho 9
b)10^n+8=100...0(n chữ số 0)+8=100....08(n-1 chữ số 0) chia hết cho 9
CM chia hết cho 495 làm tương tự biết 495=11x9x5 nha bn
b1/
ta có : 180=4x5x9
mà 1494 chia hết cho 9
1495 chia hết cho 5
1496 chia hết cho 4
=> 1494 x 1495x 1496 chia hết cho 180
\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)
Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)
10n - 1 = 10000.....00 - 1 = 99999.....9 (n-1 chữ số 9) chia hết cho 9
(n chữ số 0)
10n + 8 = 100000.....00 + 8 = 10000....08 (n-1 chữ số 0)
(n chữ số 0)
Vì 1+0+0+...+0+8 = 9 chia hết cho 9
=> 10000.....08 chia hết cho 9
=> 10n + 8 chia hết cho 9
Ta có: 10n=1000..0{n chữ số 0} => 10n trừ 1 = 999...9{n trừ 1 chữ số 9}
Mà tổng các chữ số của 999...9{n trừ 1 chữ số 9} bằng 9.(n trừ 1 chữ số 9) => Chia hết cho 9