có bao nhiêu số có 6 chữ số khác số 0 và số 9 có dạng abcabc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 6 số được viết thành abcabc là 123123,234234,345345,456456,567567,678678
và có 6 cách đảo ngược 1 số như 123123,132132,213,231,312,321
vậy ta có 6x6=36 số
Vì abc lặp lại
=> Tìm có bao nhiêu số abc thỏa mãn như đè trên
a có 8 cách chọn
b có 8 cách chọn
c có 8 cách chọn
Vậy có: 8 x 8 x 8 = 512 số như vậy
abcabc gồm:Ta chia thành abc/ abc.Điều kiện a khác b khác c và a = a;b = b;c = c
a có thể là:1,2,3,4,5,6,7,8(có 8 số)
b có thể là:7 số vì a đã dùng 1 chữ số
c có thể là:6 số
Tương tự abc kia cũng như vậy
Có tất cả các số như vậy là
8 . 7 . 6 . 8 . 7 . 6 = 336 (số)
Nếu sai thì bạn thông cảm nhé
Gọi số cần lập
Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có cách.
Theo quy tắc nhân có số thỏa yêu cầu.
Chọn D.
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
Vì abc lặp lại
=> Tìm có bao nhiêu số abc thỏa mãn như đè trên
a có 8 cách chọn
b có 8 cách chọn
c có 8 cách chọn
Vậy có: 8 x 8 x 8 = 512 số như vậy