Chứng Minh : -1/2.3/4.5/6.....2499/2500 >-1/-7^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A : \(\frac{1}{2}\times\frac{3}{4}\times.....\times\frac{2499}{2500}\)
Ta có công thức :\(\frac{m}{n}<\frac{m+1}{n+1}\)Nếu m < n
Từ đó ta có : \(\frac{1}{2}\times\frac{3}{4}\times......\times\frac{2499}{2500}<\frac{2}{3}\times\frac{4}{5}\times.....\times\frac{2500}{2501}\)
Suy ra A2<\(\frac{1}{2}\times\frac{3}{4}\times....\times\frac{2499}{2500}\times\frac{2}{3}\times\frac{4}{5}\times....\times\frac{2500}{2501}=\frac{1}{2501}\)< \(\left(\frac{1}{50}\right)^2\)= \(\frac{1}{2500}\)suy ra A < \(\frac{1}{50}\)
Còn câu còn lại áp dụng công thức : \(\frac{m}{n}>\frac{m-1}{n-1}\)nếu m<n
32476387219634651600.613130+6.56.12654920586246194369163412091.54631334196131+63413+423674504+40161*-40215621-03415101101643.4106.2123450241.40
12205422+
4103412503212546312231213.1020.0101010201.41021+074-+5202420859*524242072-426345744565474247322431423-l\;./l\/+256594512=
ko ai trả lời thì để mình
C/M : n/n+1 < n+1/n+2
1 - n/n+1 = 1/n+1
1 - n/n + 2 = 1/n+2
Vì 1/n+1 > 1/n+2 nên n/n+1 < n+1/n+2
1/2 . 3/4 . 5/6 ... 2499/2500 < 1/2 . 2/3 . 3/4 ... 2501/2502
=1/2501 < 1/2500 (1/50) 2
1/50 < 1/49 => A <1/49
(1-1/4)+(1-1/90)+(1-1/16)+...+(1-1/2500)
=(1+1+1+...+1)-(1/4+1/9+1/16+...+1/2500)<Cái ngoặc thứ 2 coi là A, ngoặc thứ 1 coi là B>
Ta có A= 1/2.2+1/3.3+1/4.4+...+1/50.50
=>A<1/1.2+1/2.3+...+1/49.50=1-1/50=49/50<1
=>A<1
B có 49 số 1 <(50-2/1+1=49> vậy B=49
B-A mà B=49, A<1 vậy 48<D<49 vậy D < 49
Ban ơi ! Mình chứng minh D>48 chứ không chứng minh D<48
Nhưng cảm ơn bạn nhờ bài bạn mà mình có thể suy luận ra kết quả rồi
Thank you !!!!!!!! :)
\(H=2+\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)
\(=2+1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{2500}\)
\(=2+49-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)
\(=51-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\right)\)
Do \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{50.50}< \frac{1}{49.50}\)
Nên \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}< 1\)
\(\Rightarrow H=51-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\right)>51-1=50\)
Vậy H>50
\(H=2+\dfrac{4-1}{4}+\dfrac{9-1}{9}+\dfrac{16-1}{16}+..+\dfrac{2500-1}{2500}\)\(H=2+49-\dfrac{1}{4}-\dfrac{1}{9}-\dfrac{1}{16}-..-\dfrac{1}{2500}\)
\(H-51=-\dfrac{1}{4}-\dfrac{1}{9}-\dfrac{1}{16}-..-\dfrac{1}{2500}\)
\(H-51=-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..+\dfrac{1}{50.50}\right)\)
\(-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..+\dfrac{1}{50.50}\right)>-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{49.50}\right)\)
\(H-51>-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{49.50}\right)\)
\(H-51>-\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+..+\dfrac{50-49}{49.50}\right)\)
\(H-51>-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(H-51>-\left(1-\dfrac{1}{50}\right)\)
\(H>-\dfrac{49}{50}+51>50\)
A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2499}{2500}\)
B=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{2500}{2501}\)
A.B=\(\frac{1.2.3.4.5....2499.2500}{2.3.4.5.6......2499.2500.2501}=\frac{1}{2501}\)
so sanh A.A va A.B
ta cm duoc \(\frac{1}{2}<\frac{2}{3},\frac{3}{4}<\frac{4}{5},.....\)dung phan bu de so sanh
vay A< B
--> A.A<A.B = \(\frac{1}{2501}<\frac{1}{2500}=\frac{1}{50^2}\)
-->A2 < 1/502
---> A <1/50
ma 1/50 <1/49
nen A<1/49
hay -A > -1/49