K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

(4x+1)2-(2x-1)2+(x+2)3

=[ (4x+1)2-(2x-1)2 ] + (x+2)3

=(4x+1-2x-1)(4x+1+2x-1) + x3+6x2+12x+8

=2x.6x+x3+6x2+12x+8

= 12x+x3+6x2+12x+8

= 24x +x3+6x2+8

`@` `\text {Ans}`

`\downarrow`

`A= (2x - 3)^2 - (2x + 3)^2`

`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`

`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`

`= -6 * 4x`

`= -24x`

16 tháng 8 2023

`A=(2x-3)^2-(2x+3)^2`

`A=(2x-3-2x-3)(2x-3+2x+3)`

`A=-6.4x=-24x`

Ta có: \(2x\left(3x-1\right)-\left(2x+1\right)\left(x-3\right)\)

\(=6x^2-2x-\left(2x^2-6x+x-3\right)\)

\(=6x^2-2x-2x^2+5x+3\)

\(=4x^2+3x+3\)

Ta có: \(3\left(x^2-2x\right)-\left(4x+2\right)\left(x-1\right)\)

\(=3x^2-6x-\left(4x^2-4x+2x-2\right)\)

\(=3x^2-6x-4x^2+2x+2\)

\(=-x^2-4x+2\)

25 tháng 7 2021

\(2x\left(3x-1\right)-\left(2x+1\right)\left(x-3\right)=6x^2-2x-2x^2+5x+3=4x^2+3x+3\)

\(3\left(x^2-2x\right)-\left(4x+2\right)\left(x-1\right)=3x^2-6x-4x^2+2x-2=-x^2-4x-2\)

a: Ta có: \(\left(8x^3-4x^2\right):4x-\left(4x^2-5x\right):2x+\left(2x\right)^2\)

\(=2x^2-x-2x+\dfrac{5}{2}+4x^2\)

\(=6x^2-3x+\dfrac{5}{2}\)

b: Ta có: \(\left(3x^3-x^2y\right):x^2-\left(xy^2+x^2y\right):xy+2x\left(x-1\right)\)

\(=3x-y-y-x+2x^2-2x\)

\(=2x^2-2y\)

16 tháng 5 2022

Với `x \ne +-2,x \ne 1/2,x \ne0`. Ta có:

`(3/[2x+4]+x/[2-x]+[2x^2+3]/[x^2-4]):[2x-1]/[4x-8]`

`=(3/[2(x+2)]-x/[x-2]+[2x^2+3]/[(x-2)(x+2)]).[4(x-2)]/[2x-1]`

`=[3(x-2)-2x(x+2)+2(2x^2+3)]/[x(x-2)(x+2)].[4(x-2)]/[2x-1]`

`=[3x-6-2x^2-4x+4x^2+6]/[x(x+2)]. 4/[2x-1]`

`=[2x^2-x]/[x(x+2)]. 4/[2x-1]`

`=[x(2x-1)]/[x(x+2)] . 4/[2x-1]`

`=4/[x+2]`

a: \(P=\left(\dfrac{3}{2\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2x^2+3}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{4\left(x-2\right)}{2x-1}\)

\(=\left(\dfrac{3\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}-\dfrac{2x\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\dfrac{4x^2+6}{2\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{4\left(x-2\right)}{2x-1}\)

\(=\dfrac{3x-6-2x^2-4x+4x^2+6}{2\left(x+2\right)\left(x-2\right)}\cdot\dfrac{4\left(x-2\right)}{2x-1}\)

\(=\dfrac{2x^2-x}{x+2}\cdot\dfrac{2}{2x-1}=\dfrac{2x}{x+2}\)

b: Khi 4x2-1=0 thì (2x-1)(2x+1)=0

=>x=1/2(loại) và x=-1/2(nhận)

Khi x=-1/2 thì \(P=\left(2\cdot\dfrac{-1}{2}\right):\left(-\dfrac{1}{2}+2\right)=-1:\dfrac{3}{2}=-\dfrac{2}{3}\)

21 tháng 6 2017

 2x(2x-1)^2-3x(x+3)(x-3)+4x(x-1) 

2x(4x^2 - 4x + 1) - 3x(x^2 - 9) + 4x^2 - 4x 

= 8x^3 - 8x^2 + 2x - 3x^3 + 27x + 4x^2 - 4x 

= (8x^3 - 3x^3) + (-8x^2+ 4x^2) + (2x +27x - 4x) 

= 5x^3 - 4x^2 + 25x 

= x(5x^2 - 4x + 25)

Vậy........

21 tháng 7 2021

1) `2x(3x-1)-(2x+1)(x-3)`

`=6x^2-2x-2x^2+6x-x+3`

`=4x^2+3x+3`

2) `3(x^2-3x)-(4x+2)(x-1)`

`=3x^2-9x-4x^2+4x-2x+2`

`=-x^2-7x+2`

3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`

`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`

`=3x^2-15x-x^2+4x-4-4x^2+9`

`=-2x^2-11x+5`

4) `(2x-3)^2+(2x-1)(x+4)`

`=4x^2-12x+9+2x^2+8x-x-4`

`=6x^2-5x+5`

a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)

\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)

\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)

\(=-18x^3-46x^2-8x+16\)