cho a+b+c=0,a2+b2+c2=1.Tinh gia tri bieu thuc: A=a4+b4+c4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Ta có a + b + c = 0
<=> (a + b + c)2 = 0
<=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
<=> ab + bc + ca = \(-\frac{1}{2}\)
=> \(\left(ab+bc+ca\right)^2=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab^2c+2a^2bc+2abc^2=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\frac{1}{4}\)
Lại có a2 + b2 + c2 = 1
=> (a2 + b2 + c2)2 = 1
<= > a4 + b4 + c4 + 2[(ab)2 + (bc)2 + (ca)2] = 1
<=> \(a^4+b^4+c^4+2.\frac{1}{4}=1\)
<=> \(a^4+b^4+c^4=\frac{1}{2}\)
Từ a + b + c = 0 => ( a + b + c )2 = 0 <=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
<=> ab + bc + ca = -1/2 => ( ab + bc + ca )2 = 1/4
<=> a2b2 + b2c2 + c2a2 + 2ab2c + 2bc2a + 2a2bc = 1/4
<=> a2b2 + b2c2 + c2a2 + 2abc( a + b + c ) = 1/4
<=> a2b2 + b2c2 + c2a2 = 1/4 ( vì a + b + c = 0 )
Từ a2 + b2 + c2 = 1 => ( a2 + b2 + c2 )2 = 1 <=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 1
<=> a4 + b4 + c4 + 2( a2b2 + b2c2 + c2a2 ) = 1
<=> a4 + b4 + c4 + 1/2 = 1 <=> a4 + b4 + c4 = 1/2
Vậy A = 1/2