Cho tam giác ABC có 3 góc nhọn (AB < AC), đường cao AD.
a) So sánh BAD và DAC, so sánh DC và DB.
b) Lấy H bât kì thuộc đoạn thẳng DC, vẽ HK vuông góc với AC (K thuộc AC). Gọi E là giao điểm của AD và HK. Chứng minh AH vuông góc EC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAKB và ΔAKC có:
AB = AC (gt)
ABK = ACK (ΔABC cân)
KB = KC (K: trđ BC)
=> ΔAKB = ΔAKC (c.g.c)
=> BKA = CKA (2 góc tương ứng)
Mà BKA + CKA = 180o (kề bù)
=> BKA = CKA = 180o : 2 = 90o
=> AK ⊥⊥ BC
b) Ta có:
AK ⊥⊥ BC
CE ⊥⊥ BC
=> AK // EC
c) Dễ dàng c/m được KAC = KCA (= 45o)
Mà KAC = ACE (AK // CE)
=> BCA = ECA
Xét ΔCAB và ΔCAE có:
CAB = CAE (= 90o)
AC: chung
BCA = ECA (cmt)
=> ΔCAB = ΔCAE (cgv-gn)
=> BC = EC (2 cạnh tương ứng)
a: ΔAHB vuông tại H
=>AH<AB
b: Xét ΔKAD vuông tại K và ΔHBA vuông tại H có
AD=BA
góc KAD=góc HBA
=>ΔKAD=ΔHBA
=>KD=HB và AK=BH
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC
a) Xét ΔABC có AB<AC(gt)
nên \(\widehat{C}< \widehat{B}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
Ta có: \(\widehat{BAD}+\widehat{ABD}=90^0\)
\(\widehat{CAD}+\widehat{ACD}=90^0\)
mà \(\widehat{ABD}>\widehat{ACD}\)
nên \(\widehat{BAD}< \widehat{CAD}\)
Xét ΔABC có
BD là hình chiếu của AB trên BC
CD là hình chiếu của AC trên BC
AB<AC(gt)
Do đó: BD<CD(Định lí quan hệ giữa đường vuông góc và đường xiên)
b) Xét ΔAEC có
CD là đường cao ứng với cạnh AE(Gt)
EK là đường cao ứng với cạnh AC(gt)
CD cắt EK tại H(gt)
Do đó: H là trực tâm của ΔAEC(Tính chất ba đường cao của tam giác)
Suy ra: AH\(\perp\)EC(đpcm)