Chứng minh
A = x^2 + 2x + 2 > 0, \(\forall\)x
B = - 2x^2 - 2x -1 < 0. \(\forall\)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
a, Sửa đề:
-x2-2x-2
=-(x2+2x+2)
=-(x2+2x+1+1)
=-[(x+1)2+1]<0\(\forall\)x
b, -x2-6x-11
=-(x2+6x+11)
=-(x2+2.x.3+32+2)
=-[(x+3)2+2]<0\(\forall\)x
Đúng tick nha,
a, -x - 2x - 2
= -(x+2x+1)-1
= -(x+1)2 -1
Có (x + 1)2 ≥0 ⇒- (x + 1) ≤ 0 ⇒ -(x + 1)2 - 1≤ -1
Do đó - x - 2x - 2 < 0 ∀ x
b, -x2 - 6x - 11
= -(x2 + 2.3.x+ 32)-2
= -(x+3)2 - 2
Có (x + 3)2 ≥0 ⇒- (x + 3) ≤ 0 ⇒ -(x + 3)2 - 2 ≤ -2
Do đó -x2 - 6x - 11 <0 ∀ x
1: \(x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
2: \(2x^2+2x+1\)
\(=2\left(x^2+x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)
3:
\(x^2+y^2=\left(x-y\right)^2+2xy=7^2+2\cdot60=169\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\cdot\left(xy\right)^2\)
\(=169^2-2\cdot60^2=21361\)
a/ Đúng, khi \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
b/ Sai, ví dụ \(x=0\) thì \(2x^2-3x-5\ne0\)
c/ Sai, khi \(x=-1\)
d/ Sai, \(3x^2+2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{3}\end{matrix}\right.\) mà \(\left\{-1;-\frac{1}{3}\right\}\notin N\)
e/ Đúng, nhìn câu trên ta thấy pt có 2 nghiệm hữu tỉ
f/ Đúng, vì \(x^2+2x+5=\left(x+1\right)^2+4>0\) \(\forall x\in R\)
\(x^2+2x+9y^2+6y+15\)
\(=\left(x^2+2x+1\right)+\left(9y^2+6y+1\right)+13\)
\(=\left(x+1\right)^2+\left(3y+1\right)^2+13\ge13>0\)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(A=x^2+2x+9y^2+6y+15\)
\(=\left(x+1\right)^2+\left(3y+1\right)^2+13\)
\(\left(x+1\right)^2\ge0\)
\(\left(3y+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(3y+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(3y+1\right)^2+13\ge13\)
\(\Rightarrow A\ge13\)
\(\Rightarrow A>0\)
\(A=x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1>0\)
hay \(A>0\forall x\) (đpcm)
\(B=-2x^2-2x-1\)
\(=-2\left(x^2+x+\frac{1}{2}\right)\)
\(=-2\left(x^2+x+\frac{1}{4}+\frac{1}{4}\right)\)
\(=-2\left(x+\frac{1}{2}\right)^2-\frac{1}{2}\)
Ta có: \(-2\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-2\left(x+\frac{1}{2}\right)^2-\frac{1}{2}< 0\)
hay \(B< 0\forall x\) (đpcm)
Trả lời:
\(A=x^2+2x+2=x^2+2.x.1+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
Vậy A > 0 với mọi x
\(B=-2x^2-2x-1=-2\left(x^2+x+\frac{1}{2}\right)=-2\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(=-2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=-2\left(x+\frac{1}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)
Dấu "=" xảy ra khi x + 1/2 = 0 <=> x = - 1/2
Vậy B < 0 với mọi x