Bài 1: Chứng minh một số tự nhiên gôm 27 chữ số 3 và 49 chứ số 7 đều chính phương
Bài 2: Chứng minh
A=12+22+32+...+562 không là số chính phương
B=1+3+5+7+...+n là số chính phương
Bài 3: Tìm hai số tự nhiên k và n sao cho k2=2006+n2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co
a thuoc{1;4;9}
=>ad thuoc{16;49}
cd thuoc{36}
Vậy abcd là số 1936
2.
ta co
1+3+5+7+...+n co tan cung la 6
=> 1+3+5+7+...+n la mot so chinh phuong (ĐPCM)
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
bài 1: vô số (ko biết có đúng ko)
bài 2 : + số lượng số hạng = (n - 1)/2 + 1 = (n + 1)/2
+ B = [(n + 1)(n + 1)/2] / 2 = (n + 1)^2 là 1 số chính phương (n là 1 số tự nhiên)